2 research outputs found

    Use of kinetic isotope effects in mechanism studies. Isotope effects and element effects associated with Hydron-Transfer steps during alkoxide-promoted dehydrohalogenations

    No full text
    The Arrhenius behavior of the primary kinetic isotope effect, (k(H)/k(D))(Obs) and (k(H)/k(T))(Obs), associated with the methanolic sodium methoxide-promoted dehydrohalogenations of m-ClC H C(i)HClCH Cl (I), m-CF C H C(i)-HClCH Cl (II) and p-CF C H C(i)HClCH F (III) has been used to calculate the internal-return parameters, a = k(-1)/K(Elim)(X), in a two-step mechanism featuring a hydrogen-bonded carbanion. This carbanion partitions between returning the hydron to carbon, k(-1), and the loss of halide, K(Elm)(X). Isotope effects at 25°C for I, (k(H)/k(D))(Obs) = 3.40 and (k(H)/ k(T))(Obs) = 6.20, and II, (k(H)/k(D))(Obs) = 3.49 and (k(H)/k(T))(Obs) = 6.55, result in similar values for a: a(H) = 0.59, a(D) = 0.13-0.14 and a(T) = 0.07. Smaller values of (k(H)/k(D))(Obs) = 2.19 and (k(H)/k(T))(Obs) = 3.56 for III are due to more internal return [a(H) = 1.9, a(D) = 0.50, and a(T) = 0.28] associated with the dehydrofluorination reaction. Calculation of k ( k(Obs) [a + 1]) results in similar isotope effects for hydron transfer in these reactions: k (H)/k (D) = 4.74 and k (H)/K (T) = 9.20; II, k (H)/k (D) = 4.91 and k (H)/k (T) = 9.75; III, k (H)/k (D) = 4.75 and k (H)/k (T) = 9.17. Reactions of m-ClC H C(i)HBrCH Br and m-ClC H C(i)HClCH Br have very small amounts of internal return, a(H) = 0.05 and a(D) = 0.01, and (k(H)/k(D))(Obs) = 4.95 results in k (H)/k (D) = 5.11 The measured isotope effects are therefore due to differences in the amount of internal return and not in the symmetry of transition state structures for the hydron transfer, and the element effect, (k(HBr)/ k(HCl)) = 29, for m-ClC H CHClCH X is mainly due to the hydron-transfer step, k (HBr)/k (HCl) = 19, and not the breaking of the C-X bend. The kinetic solvent isotope effects, k(MeOD)/k(MeOH) ~ 2.5, are consistent with three methanols of solvation lost prior to the hydron-transfer step. The energetics associated with desolvation of methoxide ion are part of the measured reaction energetics of these systems. 6 4 2 3 6 4 2 3 6 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 6 4 2 6 4 2 1 1 6 4 2 1
    corecore