25 research outputs found

    High- and low energy nonthermal X-ray emission from the cluster of galaxies A 2199

    Full text link
    We report the detection of both soft and hard excess X-ray emission in the cluster of galaxies A 2199, based upon spatially resolved spectroscopy with data from the BeppoSAX, EUVE and ROSAT missions. The excess emission is visible at radii larger than 300 kpc and increases in strength relative to the isothermal component. The total 0.1-100 keV luminosity of this component is 15 % of the cluster luminosity, but it dominates the cluster luminosity at high and low energies. We argue that the most plausible interpretation of the excess emission is an inverse Compton interaction between the cosmic microwave background and relativistic electrons in the cluster. The observed spatial distribution of the non-thermal component implies that there is a large halo of cosmic ray electrons between 0.5-1.5 Mpc surrounding the cluster core. The prominent existence of this component has cosmological implications, as it is significantly changing our picture of a clusters's particle acceleration history, dynamics between the thermal and relativistic media, and total mass budgets.Comment: Accepted for publication in Astrophysical Journal, Letter

    The X-ray synchrotron emission of RCW 86 and the implications for its age

    Get PDF
    We report here X-ray imaging spectroscopy observations of the northeastern shell of the supernova remnant RCW 86 with Chandra and XMM-Newton. Along this part of the shell the dominant X-ray radiation mechanism changes from thermal to synchrotron emission. We argue that both the presence of X-ray synchrotron radiation and the width of the synchrotron emitting region suggest a locally higher shock velocity of V_s = 2700 km/s and a magnetic field of B = 24+/-5 microGauss. Moreover, we also show that a simple power law cosmic ray electron spectrum with an exponential cut-off cannot explain the broad band synchrotron emission. Instead a concave electron spectrum is needed, as predicted by non-linear shock acceleration models. Finally, we show that the derived shock velocity strengthens the case that RCW 86 is the remnant of SN 185.Comment: 5 pages, 4 figures. The last figure is intended as a color plate. Accepted by ApJ Letter
    corecore