75 research outputs found
Conservative Initial Mapping For Multidimensional Simulations of Stellar Explosions
Mapping one-dimensional stellar profiles onto multidimensional grids as
initial conditions for hydrodynamics calculations can lead to numerical
artifacts, one of the most severe of which is the violation of conservation
laws for physical quantities such as energy and mass. Here we introduce a
numerical scheme for mapping one-dimensional spherically-symmetric data onto
multidimensional meshes so that these physical quantities are conserved. We
validate our scheme by porting a realistic 1D Lagrangian stellar profile to the
new multidimensional Eulerian hydro code CASTRO. Our results show that all
important features in the profiles are reproduced on the new grid and that
conservation laws are enforced at all resolutions after mapping.Comment: 7 pages, 5 figures, Proceeding for Conference on Computational
Physics (CCP 2011
3D simulations of Rayleigh-Taylor mixing in core-collapse SNe with CASTRO
We present multidimensional simulations of the post-explosion hydrodynamics
in three different 15 solar mass supernova models with zero, 10^{-4} solar
metallicity, and solar metallicities. We follow the growth of the
Rayleigh-Taylor instability that mixes together the stellar layers in the wake
of the explosion. Models are initialized with spherically symmetric explosions
and perturbations are seeded by the grid. Calculations are performed in
two-dimensional axisymmetric and three-dimensional Cartesian coordinates using
the new Eulerian hydrodynamics code, CASTRO. We find as in previous work, that
Rayleigh-Taylor perturbations initially grow faster in 3D than in 2D. As the
Rayleigh-Taylor fingers interact with one another, mixing proceeds to a greater
degree in 3D than in 2D, reducing the local Atwood number and slowing the
growth rate of the instability in 3D relative to 2D. By the time mixing has
stopped, the width of the mixed region is similar in 2D and 3D simulations
provided the Rayleigh-Taylor fingers show significant interaction. Our results
imply that 2D simulations of light curves and nucleosynthesis in supernovae
(SNe) that die as red giants may capture the features of an initially
spherically symmetric explosion in far less computational time than required by
a full 3D simulation. However, capturing large departures from spherical
symmetry requires a significantly perturbed explosion. Large scale asymmetries
cannot develop through an inverse cascade of merging Rayleigh-Taylor
structures; they must arise from asymmetries in the initial explosion.Comment: 12 pages, 5 figures, ApJ accepte
The Early Evolution of Primordial Pair-Instability Supernovae
The observational signatures of the first cosmic explosions and their
chemical imprint on second-generation stars both crucially depend on how heavy
elements mix within the star at the earliest stages of the blast. We present
numerical simulations of the early evolution of Population III pair-instability
supernovae with the new adaptive mesh refinement code CASTRO. In stark contrast
to 15 - 40 Msun core-collapse primordial supernovae, we find no mixing in most
150 - 250 Msun pair-instability supernovae out to times well after breakout
from the surface of the star. This may be the key to determining the mass of
the progenitor of a primeval supernova, because vigorous mixing will cause
emission lines from heavy metals such as Fe and Ni to appear much sooner in the
light curves of core-collapse supernovae than in those of pair-instability
explosions. Our results also imply that unlike low-mass Pop III supernovae,
whose collective metal yields can be directly compared to the chemical
abundances of extremely metal-poor stars, further detailed numerical
simulations will be required to determine the nucleosynthetic imprint of very
massive Pop III stars on their direct descendants.Comment: submitted to ApJ, comments welcom
The Nucleosynthetic Imprint of 15-40 Solar Mass Primordial Supernovae on Metal-Poor Stars
The inclusion of rotationally-induced mixing in stellar evolution can alter
the structure and composition of presupernova stars. We survey the effects of
progenitor rotation on nucleosynthetic yields in Population III and II
supernovae using the new adaptive mesh refinement (AMR) code CASTRO. We examine
spherical explosions in 15, 25 and 40 solar mass stars at Z = 0 and 10^-4 solar
metallicity with three explosion energies and two rotation rates. Rotation in
the Z = 0 models resulted in primary nitrogen production and a stronger
hydrogen burning shell which led all models to die as red supergiants. On the
other hand, the Z=10^-4 solar metallicity models that included rotation ended
their lives as compact blue stars. Because of their extended structure, the
hydrodynamics favors more mixing and less fallback in the metal free stars than
the Z = 10^-4 models. As expected, higher energy explosions produce more
enrichment and less fallback than do lower energy explosions, and less massive
stars produce more enrichment and leave behind smaller remnants than do more
massive stars. We compare our nucleosynthetic yields to the chemical abundances
in the three most iron-poor stars yet found and reproduce the abundance pattern
of one, HE 0557-4840, with a zero metallicity 15 solar mass, 2.4 x 10^51 erg
supernova. A Salpeter IMF averaged integration of our yields for Z=0 models
with explosion energies of 2.4x10^51 ergs or less is in good agreement with the
abundances observed in larger samples of extremely metal-poor stars, provided
15 solar mass stars are included. Since the abundance patterns of extremely
metal-poor stars likely arise from a representative sample of progenitors, our
yields suggest that low-mass supernovae contributed the bulk of the metals to
the early universe.Comment: 16 pages, 11 figures; submitted to Ap
A Carbon-enhanced Metal-poor Damped Lyman alpha System: Probing Gas from Population III Nucleosynthesis?
We present high resolution observations of an extremely metal-poor damped
Lyman-alpha system, at z_abs = 2.3400972 in the spectrum of the QSO J0035-0918,
exhibiting an abundance pattern consistent with model predictions for the
supernova yields of Population III stars. Specifically, this DLA has [Fe/H] =
-3.04, shows a clear `odd-even' effect, and is C-rich with [C/Fe] = +1.53, a
factor of about 20 greater than reported in any other damped Lyman-alpha
system. In analogy to the carbon-enhanced metal-poor stars in the Galactic halo
(with [C/Fe] > +1.0), this is the first reported case of a carbon-enhanced
damped Lyman-alpha system. We determine an upper limit to the mass of 12C,
M(12C) < 200 solar masses, which depends on the unknown gas density n(H); if
n(H) > 1 atom per cubic cm (which is quite likely for this DLA given its low
velocity dispersion), then M(12C) < 2 solar masses, consistent with pollution
by only a few prior supernovae. We speculate that DLAs such as the one reported
here may represent the `missing link' between the yields of Pop III stars and
their later incorporation in the class of carbon-enhanced metal-poor stars
which show no enhancement of neutron-capture elements (CEMP-no stars).Comment: 13 pages, 7 Figures, Accepted for publication in Monthly Notices of
the Royal Astronomical Societ
Type Ib/c supernovae in binary systems I. Evolution and properties of the progenitor stars
We investigate the evolution of Type Ib/c supernova (SN Ib/c) progenitors in
close binary systems, using new evolutionary models that include the effects of
rotation, with initial masses of 12 - 25 Msun for the primary components, and
of single helium stars with initial masses of 2.8 - 20 Msun. We find that,
despite the impact of tidal interaction on the rotation of primary stars, the
amount of angular momentum retained in the core at the presupernova stage in
different binary model sequences converge to a value similar to those found in
previous single star models. This amount is large enough to produce millisecond
pulsars, but too small to produce magnetars or long gamma-ray bursts. We employ
the most up-to-date estimate for the Wolf-Rayet mass loss rate, and its
implications for SN Ib/c progenitors are discussed in detail. In terms of
stellar structure, SN Ib/c progenitors in binary systems are predicted to have
a wide range of final masses even up to 7 Msun, with helium envelopes of 0.16 -
1.5 Msun. Our results indicate that, if the lack of helium lines in the spectra
of SNe Ic were due to small amounts of helium, the distribution of both initial
and final masses of SN Ic progenitors should be bimodal. Furthermore, we find
that a thin hydrogen layer (0.001 - 0.01 Msun) is expected to be present in
many SN Ib progenitors at the presupernova stage. We show that the presence of
hydrogen, together with a rather thick helium envelope, can lead to a
significant expansion of some SN Ib/c progenitors by the time of supernova
explosion. This may have important consequences for the shock break-out and
supernova light curve. We also argue that some SN progenitors with thin
hydrogen layers produced via Case AB/B transfer might be related to Type IIb
supernova progenitors with relatively small radii of about 10 Rsun.Comment: 16 pages, 15 figures, 2 tables, ApJ, in pres
Simulations of Accretion Powered Supernovae in the Progenitors of Gamma Ray Bursts
Observational evidence suggests a link between long duration gamma ray bursts
(LGRBs) and Type Ic supernovae. Here, we propose a potential mechanism for Type
Ic supernovae in LGRB progenitors powered solely by accretion energy. We
present spherically-symmetric hydrodynamic simulations of the long-term
accretion of a rotating gamma-ray burst progenitor star, a "collapsar," onto
the central compact object, which we take to be a black hole. The simulations
were carried out with the adaptive mesh refinement code FLASH in one spatial
dimension and with rotation, an explicit shear viscosity, and convection in the
mixing length theory approximation. Once the accretion flow becomes
rotationally supported outside of the black hole, an accretion shock forms and
traverses the stellar envelope. Energy is carried from the central
geometrically thick accretion disk to the stellar envelope by convection.
Energy losses through neutrino emission and nuclear photodisintegration are
calculated but do not seem important following the rapid early drop of the
accretion rate following circularization. We find that the shock velocity,
energy, and unbound mass are sensitive to convective efficiency, effective
viscosity, and initial stellar angular momentum. Our simulations show that
given the appropriate combinations of stellar and physical parameters,
explosions with energies ~5x10^50 ergs, velocities 3000 km/s, and unbound
material masses >6 solar masses are possible in a rapidly rotating 16 solar
mass main sequence progenitor star. Further work is needed to constrain the
values of these parameters, to identify the likely outcomes in more plausible
and massive LRGB progenitors, and to explore nucleosynthetic implications.Comment: 20 Pages, 15 Figures, Accepted to Ap
A single low-energy, iron-poor supernova as the source of metals in the star SMSS J 031300.36-670839.3
The element abundance ratios of four low-mass stars with extremely low
metallicities indicate that the gas out of which the stars formed was enriched
in each case by at most a few, and potentially only one low-energy, supernova.
Such supernovae yield large quantities of light elements such as carbon but
very little iron. The dominance of low-energy supernovae is surprising, because
it has been expected that the first stars were extremely massive, and that they
disintegrated in pair-instability explosions that would rapidly enrich galaxies
in iron. What has remained unclear is the yield of iron from the first
supernovae, because hitherto no star is unambiguously interpreted as
encapsulating the yield of a single supernova. Here we report the optical
spectrum of SMSS J031300.36- 670839.3, which shows no evidence of iron (with an
upper limit of 10^-7.1 times solar abundance). Based on a comparison of its
abundance pattern with those of models, we conclude that the star was seeded
with material from a single supernova with an original mass of ~60 Mo (and that
the supernova left behind a black hole). Taken together with the previously
mentioned low-metallicity stars, we conclude that low-energy supernovae were
common in the early Universe, and that such supernovae yield light element
enrichment with insignificant iron. Reduced stellar feedback both chemically
and mechanically from low-energy supernovae would have enabled first-generation
stars to form over an extended period. We speculate that such stars may perhaps
have had an important role in the epoch of cosmic reionization and the chemical
evolution of early galaxies.Comment: 28 pages, 6 figures, Natur
- …