29 research outputs found

    Synergistic Microbial Consortium for Bioenergy Generation from Complex Natural Energy Sources

    Get PDF
    Microbial species have evolved diverse mechanisms for utilization of complex carbon sources. Proper combination of targeted species can affect bioenergy production from natural waste products. Here, we established a stable microbial consortium with Escherichia coli and Shewanella oneidensis in microbial fuel cells (MFCs) to produce bioenergy from an abundant natural energy source, in the form of the sarcocarp harvested from coconuts. This component is mostly discarded as waste. However, through its usage as a feedstock for MFCs to produce useful energy in this study, the sarcocarp can be utilized meaningfully. The monospecies S. oneidensis system was able to generate bioenergy in a short experimental time frame while the monospecies E. coli system generated significantly less bioenergy. A combination of E. coli and S. oneidensis in the ratio of 1 : 9 (v : v) significantly enhanced the experimental time frame and magnitude of bioenergy generation. The synergistic effect is suggested to arise from E. coli and S. oneidensis utilizing different nutrients as electron donors and effect of flavins secreted by S. oneidensis. Confocal images confirmed the presence of biofilms and point towards their importance in generating bioenergy in MFCs

    The MapZ-Mediated Methylation of Chemoreceptors Contributes to Pathogenicity of Pseudomonas aeruginosa

    Get PDF
    The pathogenic bacterium Pseudomonas aeruginosa is notorious for causing acute and chronic infections in humans. The ability to infect host by P. aeruginosa is dependent on a complex cellular signaling network, which includes a large number of chemosensory signaling pathways that rely on the methyl-accepting chemotaxis proteins (MCPs). We previously found that the second messenger c-di-GMP-binding adaptor MapZ modulates the methylation of an amino acid-detecting MCP by directly interacting with a chemotaxis methyltransferase CheR1. The current study further expands our understanding of the role of MapZ in regulating chemosensory pathways by demonstrating that MapZ suppresses the methylation of multiple MCPs in P. aeruginosa PAO1. The MCPs under the control of MapZ include five MCPs (Aer, CtpH, CptM, PctA, and PctB) for detecting oxygen/energy, inorganic phosphate, malate and amino acids, and three MCPs (PA1251, PA1608, and PA2867) for detecting unknown chemoattractant or chemorepellent. Chemotaxis assays showed that overexpression of MapZ hampered the taxis of P. aeruginosa toward chemoattractants and scratch-wounded human cells. Mouse infection experiments demonstrated that a dysfunction in MapZ regulation had a profound negative impact on the dissemination of P. aeruginosa and resulted in attenuated bacterial virulence. Together, the results imply that by controlling the methylation of various MCPs via the adaptor protein MapZ, c-di-GMP exerts a profound influence on chemotactic responses and bacterial pathogenesis

    Development of teixobactin analogues containing hydrophobic, non-proteogenic amino acids that are highly potent against multidrug-resistant bacteria and biofilms.

    Get PDF
    Teixobactin is a cyclic undecadepsipeptide that has shown excellent potency against multidrug-resistant pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). In this article, we present the design, synthesis, and antibacterial evaluations of 16 different teixobactin analogues. These simplified analogues contain commercially available hydrophobic, non-proteogenic amino acid residues instead of synthetically challenging expensive L-allo-enduracididine amino acid residue at position 10 together with different combinations of arginines at positions 3, 4 and 9. The new teixobactin analogues showed potent antibacterial activity against a broad panel of Gram-positive bacteria, including MRSA and VRE strains. Our work also presents the first demonstration of the potent antibiofilm activity of teixobactin analogoues against Staphylococcus species associated with serious chronic infections. Our results suggest that the use of hydrophobic, non-proteogenic amino acids at position 10 in combination with arginine at positions 3, 4 and 9 holds the key to synthesising a new generation of highly potent teixobactin analogues to tackle resistant bacterial infections and biofilms

    Development of teixobactin analogues containing hydrophobic, non-proteogenic amino acids that are highly potent against multidrug-resistant bacteria and biofilms

    Get PDF
    Teixobactin is a cyclic undecadepsipeptide that has shown excellent potency against multidrug-resistant pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). In this article, we present the design, synthesis, and antibacterial evaluations of 16 different teixobactin analogues. These simplified analogues contain commercially available hydrophobic, non-proteogenic amino acid residues instead of synthetically challenging expensive L-allo-enduracididine amino acid residue at position 10 together with different combinations of arginines at positions 3, 4 and 9. The new teixobactin analogues showed potent antibacterial activity against a broad panel of Gram-positive bacteria, including MRSA and VRE strains. Our work also presents the first demonstration of the potent antibiofilm activity of teixobactin analogoues against Staphylococcus species associated with serious chronic infections. Our results suggest that the use of hydrophobic, non-proteogenic amino acids at position 10 in combination with arginine at positions 3, 4 and 9 holds the key to synthesising a new generation of highly potent teixobactin analogues to tackle resistant bacterial infections and biofilms

    Effects of antibiotic treatment and phagocyte infiltration on development of Pseudomonas aeruginosa biofilm—Insights from the application of a novel PF hydrogel model in vitro and in vivo

    Get PDF
    Background and purposeBacterial biofilm infections are major health issues as the infections are highly tolerant to antibiotics and host immune defenses. Appropriate biofilm models are important to develop and improve to make progress in future biofilm research. Here, we investigated the ability of PF hydrogel material to facilitate the development and study of Pseudomonas aeruginosa biofilms in vitro and in vivo.MethodsWild-type P. aeruginosa PAO1 bacteria were embedded in PF hydrogel situated in vitro or in vivo, and the following aspects were investigated: 1) biofilm development; 2) host immune response and its effect on the bacteria; and 3) efficacy of antibiotic treatment.ResultsMicroscopy demonstrated that P. aeruginosa developed typical biofilms inside the PF hydrogels in vitro and in mouse peritoneal cavities where the PF hydrogels were infiltrated excessively by polymorphonuclear leukocytes (PMNs). The bacteria remained at a level of ~106 colony-forming unit (CFU)/hydrogel for 7 days, indicating that the PMNs could not eradicate the biofilm bacteria. β-Lactam or aminoglycoside mono treatment at 64× minimal inhibitory concentration (MIC) killed all bacteria in day 0 in vitro biofilms, but not in day 1 and older biofilms, even at a concentration of 256× MIC. Combination treatment with the antibiotics at 256× MIC completely killed the bacteria in day 1 in vitro biofilms, and combination treatment in most of the cases showed significantly better bactericidal effects than monotherapies. However, in the case of the established in vivo biofilms, the mono and combination antibiotic treatments did not efficiently kill the bacteria.ConclusionOur results indicate that the bacteria formed typical biofilms in PF hydrogel in vitro and in vivo and that the biofilm bacteria were tolerant against antibiotics and host immunity. The PF hydrogel biofilm model is simple and easy to fabricate and highly reproducible with various application possibilities. We conclude that the PF hydrogel biofilm model is a new platform that will facilitate progress in future biofilm investigations, as well as studies of the efficacy of new potential medicine against biofilm infections

    Investigation of the effects of Pseudomonas aeruginosa cell signalling on host-pathogen interactions during infection

    No full text
    Bacterial biofilms are highly tolerant to harsh conditions including antimicrobial agents and host immunity. Biofilms have been associated with chronic and persistent infections, which is a severe threat to the public health. Hence, there is an urgent need to develop treatments to eradicate these biofilms during infections. Treatment with colistin, one of the “last-resort” antibiotics, to Pseudomonas aeruginosa biofilm leads to the development of colistin-tolerant subpopulations. In the first study, we determined the mechanism of the development of P. aeruginosa colistin-tolerant subpopulations in biofilm in dynamic flow cell system via pulsed-SILAC proteomics-approached and showed that quorum sensing (QS) is important during the colistin-tolerant subpopulation development process. In the second study, P. aeruginosa is observed to form cell aggregates on cornea during infection, but the physiology of the cell aggregates remain unknown. Here, we proved that cyclic-di-GMP signaling plays a key role in biofilm formation on the wounded mouse cornea. Regulating the intracellular cyclic-di-GMP content affects the infection outcome. Finally, we designed two new treatment strategies by manipulating QS or cyclicdi-GMP signaling in the biofilm, in conjunction with colistin treatment and showed the feasibility of these treatment strategies in both in vitro and in vivo models.Doctor of Philosophy (IGS

    The pyocin regulator PrtR regulates virulence expression of Pseudomonas aeruginosa by modulation of Gac/Rsm system and c-di-GMP signaling pathway

    No full text
    In Pseudomonas aeruginosa, the second messenger cyclic-di-GMP and Gac/Rsm signaling pathways are associated with the transition from acute to chronic infection. Therefore, identification of the molecular mechanisms that govern lifestyle choice in bacteria is very important. Here, we identified a novel cyclic-di-GMP modulator, PrtR, which was shown to repress pyocin production by inhibition of PrtN and activate the type III secretion system (T3SS) through PtrB. Compared to a wild-type strain or a prtN mutant, the prtR prtN double mutant exhibited a wrinkly colony and hyperbiofilm phenotype, as well as an increase in intracellular c-di-GMP levels. Interestingly, a diguanylate cyclase (DGC) gene, siaD, was repressed by PrtR. Further experiments revealed that PrtR directly interacts with SiaD and facilitates the accumulation of c-di-GMP in cells. We also demonstrated that PrtR regulates the activity of the Gac/Rsm system, thus affecting expression of the T3SS and type VI secretion system (T6SS) and the formation of biofilm. Taken together, the present findings indicate that PrtR, as a c-di-GMP modulator, plays key roles in the adaptation to opportunistic infection of P. aeruginosa Additionally, this study revealed a novel mechanism for PrtR-mediated regulation of the lifestyle transition via the Gac/Rsm and c-di-GMP signaling networks.Published versio

    In vitro and In vivo efficacy of an LpxC inhibitor, CHIR-090, alone or combined with colistin against Pseudomonas aeruginosa biofilm

    No full text
    With the rapid spread of antimicrobial resistance in Gram-negative pathogens, biofilm-associated infections are increasingly harder to treat and combination therapy with colistin has become one of the most efficient therapeutic strategies. Our study aimed to evaluate the potential for the synergy of colistin combined with CHIR-090, a potent LpxC inhibitor, against in vitro and in vivo Pseudomonas aeruginosa biofilms. Four P. aeruginosa isolates with various colistin susceptibilities were chosen for evaluation. The tested isolates of P. aeruginosa exhibited MIC values ranging from 1 to 64 and 0.0625 to 0.5 μg/ml for colistin and CHIR-090, respectively. Against 24-h static biofilms, minimum biofilm eradication concentration values ranged from 256 to 512 and 8 to >128 μg/ml for colistin and CHIR-090, respectively. Interestingly, subinhibitory concentrations of CHIR-090 contributed to the eradication of subpopulations of P. aeruginosa with the highest colistin MIC values. The combination of colistin and CHIR-090 at subinhibitory concentrations demonstrated synergistic activity both in vivo and in vitro and prevented the formation of colistin-tolerant subpopulations in in vitro biofilms. In summary, our study highlights the in vivo and in vitro synergistic activity of the colistin and CHIR-090 combination against both colistin-susceptible and -nonsusceptible P. aeruginosa biofilms. Further studies are warranted to investigate the clinical relevance of the combination of these two antimicrobials and outline the underlying mechanism for their synergistic action.NRF (Natl Research Foundation, S’pore)MOE (Min. of Education, S’pore)Published versio

    Population dynamics and transcriptomic responses of Pseudomonas aeruginosa in a complex laboratory microbial community

    No full text
    Pseudomonas aeruginosa tends to be among the dominant species in multi-species bacterial consortia in diverse environments. To understand P. aeruginosa’s physiology and interactions with co-existing bacterial species in different conditions, we established physiologically reproducible 18 species communities, and found that P. aeruginosa dominated in mixed-species biofilm communities but not in planktonic communities. P. aeruginosa’s H1 type VI secretion system was highly induced in mixed-species biofilm consortia, compared with its monospecies biofilm, which was further demonstrated to play a key role in P. aeruginosa's enhanced fitness over other bacterial species. In addition, the type IV pili and Psl exopolysaccharide were required for P. aeruginosa to compete with other bacterial species in the biofilm community. Our study showed that the physiology of P. aeruginosa is strongly affected by interspecies interactions, and both biofilm determinants and type VI secretion system contribute to higher P. aeruginosa's fitness over other species in complex biofilm communities.NRF (Natl Research Foundation, S’pore)MOE (Min. of Education, S’pore)Published versio
    corecore