4 research outputs found

    Genetic newborn screening and digital technologies: A project protocol based on a dual approach to shorten the rare diseases diagnostic path in Europe.

    Get PDF
    Since 72% of rare diseases are genetic in origin and mostly paediatrics, genetic newborn screening represents a diagnostic "window of opportunity". Therefore, many gNBS initiatives started in different European countries. Screen4Care is a research project, which resulted of a joint effort between the European Union Commission and the European Federation of Pharmaceutical Industries and Associations. It focuses on genetic newborn screening and artificial intelligence-based tools which will be applied to a large European population of about 25.000 infants. The neonatal screening strategy will be based on targeted sequencing, while whole genome sequencing will be offered to all enrolled infants who may show early symptoms but have resulted negative at the targeted sequencing-based newborn screening. We will leverage artificial intelligence-based algorithms to identify patients using Electronic Health Records (EHR) and to build a repository "symptom checkers" for patients and healthcare providers. S4C will design an equitable, ethical, and sustainable framework for genetic newborn screening and new digital tools, corroborated by a large workout where legal, ethical, and social complexities will be addressed with the intent of making the framework highly and flexibly translatable into the diverse European health systems

    Drinking Water Supply in Rural Africa Based on a Mini-Grid Energy System—A Socio-Economic Case Study for Rural Development

    No full text
    Water is an essential resource required for various human activities such as drinking, cooking, growing food, and personal hygiene. As a key infrastructure of public services, access to clean and safe drinking water is an essential factor for local socio-economic development. Despite various national and international efforts, water supply is often not guaranteed, especially in rural areas of Africa. Although many water resources are theoretically available in these areas, bodies of water are often contaminated with dangerous pathogens and pollutants. As a result, people, often women and children, have to travel long distances to collect water from taps and are exposed to dangers such as physical violence and accidents on their way. In this article, we present a socio-economic case study for rural development. We describe a drinking water treatment plant with an annual capacity of 10,950 m3 on Kibumba Island in Lake Victoria (Tanzania). The plant is operated by a photovoltaic mini-grid system with second-life lithium-ion battery storage. We describe the planning, the installation, and the start of operation of the water treatment system. In addition, we estimate the water prices achievable with the proposed system and compare it to existing sources of drinking water on Kibumba Island. Assuming a useful life of 15 years, the installed drinking water system is cost-neutral for the community at a cost price of 0.70 EUR/m3, 22% less than any other source of clean water on Kibumba Island. Access to safe and clean drinking water is a major step forward for the local population. We investigate the socio-economic added value using social and economic key indicators like health, education, and income. Hence, this approach may serve as a role model for community-owned drinking water systems in sub-Saharan Africa
    corecore