5 research outputs found

    Oral medicine acceptance in infants and toddlers: measurement properties of the caregiver-administered Children’s acceptance tool (CareCAT)

    Get PDF
    BACKGROUND: Developing age-appropriate medications remains a challenge in particular for the population of infants and toddlers, as they are not able to reliably self-report if they would accept and consequently take an oral medicine. Therefore, it is common to use caregivers as proxies when assessing medicine acceptance. The outcome measures used in this research field differ and most importantly lack validation, implying a persisting gap in knowledge and controversy in the field. The newly developed Caregiver-administered Children’s Acceptance Tool (CareCAT) is based on a 5-point nominal scale, with descriptors of medication acceptance behavior. This crosssectional study assessed the measurement properties of the tool with regards to the user’s understanding and its intra- and inter-rater reliability. METHODS: Participating caregivers were enrolled at a primary healthcare facility where their children (median age 6 months) had been prescribed oral antibiotics. Caregivers, trained observers and the tool developer observed and scored on the CareCAT tool what behavior children exhibited when receiving the medicine (n = 104). The videorecords of this process served as replicate observations (n = 69). After using the tool caregivers were asked to explain their observations and the tool descriptors in their own words. The tool’s reliability was assessed by percentage agreement and Cohen’s unweighted kappa coefficients of agreement for nominal scales. RESULTS: The study found that caregivers using CareCAT had a satisfactory understanding of the tool’s descriptors. Using its dichotomized scores the tool reliably was strong for acceptance behavior (agreement inter-rater 84–88%, kappa 0.66–0.76; intra-rater 87–89%, kappa 0.68–0.72) and completeness of medicine ingestion (agreement inter-rater 82–86%, kappa 0.59–0.67; intra-rater 85–93%, kappa 0.50–0.70). CONCLUSIONS: The CareCAT is a low-cost, easy-to-use and reliable instrument, which is relevant to assess acceptance behavior and completeness of medicine ingestion, both of which are of significant importance for developing age-appropriate medications in infants and toddlers

    Transverse-momentum and pseudorapidity distributions of charged hadrons in pppp collisions at s\sqrt{s} = 7 TeV

    No full text
    Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at s=7\sqrt{s} = 7~TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity \dnchdeta|_{|\eta| < 0.5} = 5.78\pm 0.01\stat\pm 0.23\syst for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from s=0.9\sqrt{s} = 0.9 to 7~TeV is 66.1\%\pm 1.0\%\stat\pm 4.2\%\syst. The mean transverse momentum is measured to be 0.545\pm 0.005\stat\pm 0.015\syst\GeVc. The results are compared with similar measurements at lower energies.Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at sqrt(s) = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity, dN(charged)/d(eta), for |eta| < 0.5, of 5.78 +/- 0.01 (stat) +/- 0.23 (syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from sqrt(s) = 0.9 to 7 TeV is 66.1% +/- 1.0% (stat) +/- 4.2% (syst). The mean transverse momentum is measured to be 0.545 +/- 0.005 (stat) +/- 0.015 (syst) GeV/c. The results are compared with similar measurements at lower energies

    Measurement of the charge ratio of atmospheric muons with the CMS detector

    No full text
    We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/ c to 1 TeV/ c . The surface flux ratio is measured to be 1.2766±0.0032(stat.)±0.0032(syst.) , independent of the muon momentum, below 100 GeV/ c . This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \pm 0.0032(stat.) \pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments
    corecore