110 research outputs found

    EFFICACY OF ALIROCUMAB IN 1,191 PATIENTS WITH A WIDE SPECTRUM OF MUTATIONS IN GENES CAUSATIVE FOR FAMILIAL HYPERCHOLESTEROLEMIA

    Get PDF
    Background Mutation(s) in genes involved in the low-density lipoprotein receptor (LDLR) pathway are typically the underlying cause of familial hypercholesterolemia. Objective The objective of the study was to examine the influence of genotype on treatment responses with alirocumab. Methods Patients from 6 trials (n = 1191, including 758 alirocumab-treated; Clinicaltrials.gov identifiers: NCT01266876; NCT01507831; NCT01623115; NCT01709500; NCT01617655; NCT01709513) were sequenced for mutations in LDLR , apolipoprotein B ( APOB ), proprotein convertase subtilisin/kexin type 9 ( PCSK9 ), LDLR adaptor protein 1, and signal-transducing adaptor protein 1 genes. New mutations were confirmed by Sanger sequencing. Results One or more specific gene mutations were found in 898 patients (75%): 387 and 437 patients had heterozygous LDLR defective and negative mutations, respectively; 46 had a heterozygous APOB -defective mutation; 8 patients had a heterozygous PCSK9 gain-of-function mutation; 293 (25%) had no identifiable mutation in the genes investigated. LDL cholesterol reductions at Week 24 were generally similar across genotypes: 48.3% (n = 131) and 54.3% (n = 89) in LDLR -defective heterozygotes with alirocumab 75 mg Q2W (with possible increase to 150 mg at Week 12) and 150 mg Q2W, respectively; 49.7% (n = 168) and 60.7% (n = 88) in LDLR -negative heterozygotes; 54.1% (n = 20) and 50.1% (n = 6) in APOB -defective heterozygotes; 60.5% (n = 5) and 94.0% (n = 1) in PCSK9 heterozygotes; and 44.9% (n = 85) and 55.4% (n = 69) in patients with no identified mutations. Overall rates of treatment-emergent adverse events were similar for alirocumab vs controls (placebo in 5 trials, ezetimibe control or atorvastatin calibrator arm in 1 trial), with only a higher rate of injection-site reactions with alirocumab. Conclusions In this large patient cohort, individuals with a wide spectrum of mutations in genes underlying familial hypercholesterolemia responded substantially and similarly to alirocumab treatment

    Alirocumab efficacy in patients with double heterozygous, compound heterozygous, or homozygous familial hypercholesterolemia

    Get PDF
    Background Mutations in the genes for the low-density lipoprotein receptor ( LDLR ), apolipoprotein B, and proprotein convertase subtilisin/kexin type 9 have been reported to cause heterozygous and homozygous familial hypercholesterolemia (FH). Objective The objective is to examine the influence of double heterozygous, compound heterozygous, or homozygous mutations underlying FH on the efficacy of alirocumab. Methods Patients from 6 alirocumab trials with elevated low-density lipoprotein cholesterol (LDL-C) and FH diagnosis were sequenced for mutations in the LDLR , apolipoprotein B, proprotein convertase subtilisin/kexin type 9, LDLR adaptor protein 1 ( LDLRAP1 ), and signal-transducing adaptor protein 1 genes. The efficacy of alirocumab was examined in patients who had double heterozygous, compound heterozygous, or homozygous mutations. Results Of 1191 patients sequenced, 20 patients were double heterozygotes (n = 7), compound heterozygotes (n = 10), or homozygotes (n = 3). Mean baseline LDL-C levels were similar between patients treated with alirocumab (n = 11; 198 mg/dL) vs placebo (n = 9; 189 mg/dL). All patients treated with alirocumab 75/150 or 150 mg every 2 weeks had an LDL-C reduction of ≄15% at either week 12 or 24. At week 12, 1 patient had an increase of 7.1% in LDL-C, whereas in others, LDL-C was reduced by 21.7% to 63.9% (corresponding to 39–114 mg/dL absolute reduction from baseline). At week 24, LDL-C was reduced in all patients by 8.8% to 65.1% (10–165 mg/dL absolute reduction from baseline). Alirocumab was generally well tolerated in the 6 trials. Conclusion Clinically meaningful LDL-C–lowering activity was observed in patients receiving alirocumab who were double heterozygous, compound heterozygous, or homozygous for genes that are causative for FH

    Efficacy of statins in familial hypercholesterolaemia: a long term cohort study

    Get PDF
    Objective To determine the efficacy of statin treatment on risk of coronary heart disease in patients with familial hypercholesterolaemia

    Relationship between moderate-to-vigorous physical activity, abdominal fat and immunometabolic markers in postmenopausal women

    Get PDF
    AbstractObjectsTo assess the burden of levels of physical activity, non-esterified fatty acids (NEFA), triacylglycerol and abdominal fat on the immunometabolic profile of postmenopausal women.Study designForty-nine postmenopausal women [mean age 59.43 (standard deviation 5.61) years] who did not undertake regular physical exercise participated in this study. Body composition was assessed using dual-energy X-ray absorptiometry, and levels of NEFA, tumour necrosis factor-α, adiponectin, insulin and triacylglycerol were assessed using fasting blood samples. The level of physical activity was assessed using an accelerometer (Actigraph GTX3x), and reported as counts/min, time spent undertaking sedentary activities and time spent undertaking moderate-to-vigorous physical activity (MVPA). The following conditions were considered to be risk factors: (i) sedentary lifestyle (<150min of MVPA per week); (ii) high level (above median) of abdominal fat; and (iii) hypertriacylglycerolaemia (<150mg/dl of triacylglycerol).ResultsIn comparison with active women, sedentary women had higher levels of body fat (%) (p=0.041) and NEFA (p=0.064). Women with higher levels of abdominal fat had impaired insulin resistance (HOMA-IR) (p=0.016) and spent more time undertaking sedentary activities (p=0.043). Moreover, the women with two risk factors or more had high levels of NEFA and HOMA-IR (p<0.05), as well as an eight-fold higher risk of a high level of NEFA, independent of age (p<0.05). No significant relationship was found between levels of physical activity, abdominal fat, tumour necrosis factor-α and adiponectin (p>0.05).ConclusionPostmenopausal women with a combination of hypertriacylglycerolaemia, a high level of abdominal fat and a sedentary lifestyle are more likely to have metabolic disturbances

    Reducing the Clinical and Public Health Burden of Familial Hypercholesterolemia A Global Call to Action

    Get PDF
    Q1Q1ArtĂ­culo completoE1-E13IMPORTANCE Familial hypercholesterolemia (FH) is an underdiagnosed and undertreated genetic disorder that leads to premature morbidity and mortality due to atherosclerotic cardiovascular disease. Familial hypercholesterolemia affects 1 in 200 to 250 people around the world of every race and ethnicity. The lack of general awareness of FH among the public and medical community has resulted in only 10% of the FH population being diagnosed and adequately treated. The World Health Organization recognized FH as a public health priority in 1998 during a consultation meeting in Geneva, Switzerland. The World Health Organization report highlighted 11 recommendations to address FH worldwide, from diagnosis and treatment to family screening and education. Research since the 1998 report has increased understanding and awareness of FH, particularly in specialty areas, such as cardiology and lipidology. However, in the past 20 years, there has been little progress in implementing the 11 recommendations to prevent premature atherosclerotic cardiovascular disease in an entire generation of families with FH. OBSERVATIONS In 2018, the Familial Hypercholesterolemia Foundation and the World Heart Federation convened the international FH community to update the 11 recommendations. Two meetings were held: one at the 2018 FH Foundation Global Summit and the other during the 2018 World Congress of Cardiology and Cardiovascular Health. Each meeting served as a platform for the FH community to examine the original recommendations, assess the gaps, and provide commentary on the revised recommendations. The Global Call to Action on Familial Hypercholesterolemia thus represents individuals with FH, advocacy leaders, scientific experts, policy makers, and the original authors of the 1998 World Health Organization report. Attendees from 40 countries brought perspectives on FH from low-, middle-, and high-income regions. Tables listing country-specific government support for FH care, existing country-specific and international FH scientific statements and guidelines, country-specific and international FH registries, and known FH advocacy organizations around the world were created. CONCLUSIONS AND RELEVANCE By adopting the 9 updated public policy recommendations created for this document, covering awareness; advocacy; screening, testing, and diagnosis; treatment; family-based care; registries; research; and cost and value, individual countries have the opportunity to prevent atherosclerotic heart disease in their citizens carrying a gene associated with FH and, likely, all those with severe hypercholesterolemia as well

    Low-Density Lipoprotein receptor: its structure, function, and mutations

    No full text
    Uptake of cholesterol, mediated by the low-density lipoprotein (LDL)-receptor, plays a crucial role in lipoprotein metabolism. The LDL-receptor is responsible for the binding and subsequent cellular uptake of apolipoprotein B- and E-containing lipoproteins. To accomplish this, the receptor has to be transported from the site of synthesis, the membranes of the rough endoplasmatic reticulum (ER), through the Golgi apparatus, to its position on the surface of the cellular membrane. The translation of LDL-receptor messenger RNA into the polypeptide chain for the receptor protein takes place on the surface-bound ribosomes of the rough ER. Immature O-linked carbohydrate chains are attached to this integral precursor membrane protein. The molecular weight of the receptor at this stage is 120.000 d. The precursor-protein is transported from the rough ER to the Golgi apparatus, where the O-linked sugar chains are elongated until their final size is reached. The molecular weight has then increased to 160.000 d. The mature LDL-receptor is subsequently guided to the "coated pits" on the cell surface. These specialized areas of the cell membrane are rich in clathrin and interact with the LDL-receptor protein. Only here can the LDL-receptor bind LDL-particles. Within 3 to 5 minutes of its formation, the LDL-particle-receptor complex is internalized through endocytosis and is further metabolized through the receptor-mediated endocytosis pathway. Mutations in the gene coding for the LDL-receptor can interfere to a varying extent with all the different stages of the posttranslational processing, binding, uptake, and subsequent dissociation of the LDL-particle-LDL-receptor complex, but invariably the mutations lead to familial hypercholesterolemia. Thus, mutations in the LDL-receptor gene give rise to a substantially varying clinical expression of familial hypercholesterolemi

    NLA Symposium on Familial Hypercholesterolemia Defining the challenges of FH Screening for familial hypercholesterolemia

    No full text
    Abstract: The purpose of this article is to briefly review but also to highlight the rationale, motivation, and methods in the process of identifying patients of all ages with familial hypercholesterolemia (FH), an often hidden but very important genetic disorder. Since the initiation of population screening for FH in 1994 in the Netherlands, a vast amount of experience has been gathered, addressing almost all issues that are encountered in population screening

    Lysosomal acid lipase A and the hypercholesterolaemic phenotype

    No full text
    Mutations in lysosomal acid lipase A (LIPA) result in two phenotypes depending on the extent of lysosomal acid lipase (LAL) deficiency: the severe, early-onset Wolman disease or the less severe cholesteryl ester storage disease (CESD). In CESD, the severity of the symptoms, hepatomegaly and hypercholesterolaemia, can be highly variable, presenting in childhood or adulthood. Therefore, it is likely that many patients are undiagnosed or misdiagnosed. Nevertheless, LAL deficiency has been recognized for more than 25 years, but adequate therapeutic strategies are limited. CESD has an estimated prevalence of one in 90,000 to 170,000 individuals in the general population, confirming the likelihood that this disease is currently underdiagnosed. A number of studies have shown that in LIPA deficient patients the hypercholesterolaemic phenotype can be attenuated using statin therapy, and favourable effects on reduction of lipid accumulation in lysosomes have been reported. Targeting lysosomal exocytosis with LAL replacement therapy was shown to be successful in animal models and recently a phase I/II study demonstrated its safety and its potential metabolic efficacy on transaminase levels. The hypercholesterolaemic phenotype in CESD can be difficult to distinguish from other known hypercholesterolaemic disorders. In the majority of CESD cases with hypercholesterolaemia favourable responses on statin treatment are observed, but the effect on reduction of lipid accumulation in lysosomes needs to be further evaluated. Combining statins with LAL replacement therapy may provide a promising approach for optimal treatment of LIPA deficiencies in the futur

    Successful genetic screening and creating awareness of familial hypercholesterolemia and other heritable Dyslipidemias in the Netherlands

    No full text
    The genetic screening program for familial hypercholesterolemia (FH) in the Netherlands, which was embraced by the Dutch Ministry of Health from 1994 to 2014, has led to twenty years of identification of at least 1500 FH cases per year. Although funding by the government was terminated in 2014, the approach had proven its effectiveness and had built the foundation for the development of more sophisticated diagnostic tools, clinical collaborations, and new molecular-based treatments for FH patients. As such, the community was driven to continue the program, insurance companies were convinced to collaborate, and multiple approaches were launched to find new index cases with FH. Additionally, the screening was extended, now also including other heritable dyslipidemias. For this purpose, a diagnostic next-generation sequencing (NGS) panel was developed, which not only comprised the culprit LDLR, APOB, and PCSK9 genes, but also 24 other genes that are causally associated with genetic dyslipidemias. Moreover, the NGS technique enabled further optimization by including pharmacogenomic genes in the panel. Using such a panel, more patients that are prone to cardiovascular diseases are being identified nowadays and receive more personalized treatment. Moreover, the NGS output teaches us more and more about the dyslipidemic landscape that is less straightforward than we originally thought. Still, continuous progress is being made that underlines the strength of genetics in dyslipidemia, such as discovery of alternative genomic pathogenic mechanisms of disease development and polygenic contribution

    Current novel-gene-finding strategy for autosomal-dominant hypercholesterolaemia needs refinement

    No full text
    Autosomal-dominant hypercholesterolaemia (ADH) is a heterogeneous common disorder, and uncovering the molecular determinants that underlie ADH is a major focus of cardiovascular research. However, despite rapid technical advances, efforts to identify novel ADH genes have yet not been very successful and are largely challenged by phenotypic and genetic heterogeneity of this disease. We aimed to investigate the impact of this phenotypic heterogeneity on successfully finding new genes that are involved in ADH. For the ADH phenotype, subjects are considered as affected according to plasma cholesterol levels above the 95th percentile for age and gender. The disease penetrance is generally set at 0.9. These parameters were evaluated in 10000 carriers of true pathogenic APOB and LDLR mutations and 20000 relatives negative for the familial mutations. Application of the above parameters in almost a thousand families included in this study would have identified the causal variant in only 38% of all families. An average penetrance of 0.9 or higher, with a cut-point at the 95th percentile, was only observed for LDLR nonsense mutations. For APOB and LDLR missense mutations, a disease penetrance of 0.9 or higher is only expected, when total cholesterol and low-density lipoprotein cholesterol cut-points between the 75th and 90th percentile are used to determine an individual's disease status. Although pathogenic LDLR and APOB mutations do follow Mendelian patterns of inheritance, the extensive variation in genotype and phenotype for well-known ADH-causing mutations emphasises that current criteria and strategies indeed are likely to hamper the identification of novel genes related to ADH. These findings provide a basis for the revision of our assessment on who is affected and who is not and emphasise the essence of pedigree information and mapping data before exome sequencing is applied in order to increase success rates of finding new genes related to AD
    • 

    corecore