27 research outputs found

    Common Patterns in the Evolution between the Luminous Neutron Star Low-Mass X-ray Binary Subclasses

    Get PDF
    The X-ray transient XTE J1701-462 was the first source observed to evolve through all known subclasses of low-magnetic-field neutron star low-mass X-ray binaries (NS-LMXBs), as a result of large changes in its mass accretion rate. To investigate to what extent similar evolution is seen in other NS-LMXBs we have performed a detailed study of the color-color and hardness-intensity diagrams (CDs and HIDs) of Cyg X-2, Cir X-1, and GX 13+1 -- three luminous X-ray binaries, containing weakly magnetized neutron stars, known to exhibit strong secular changes in their CD/HID tracks. Using the full set of Rossi X-ray Timing Explorer Proportional Counter Array data collected for the sources over the 16 year duration of the mission, we show that Cyg X-2 and Cir X-1 display CD/HID evolution with close similarities to XTE J1701-462. Although GX 13+1 shows behavior that is in some ways unique, it also exhibits similarities to XTE J1701-462, and we conclude that its overall CD/HID properties strongly indicate that it should be classified as a Z source, rather than as an atoll source. We conjecture that the secular evolution of Cyg X-2, Cir X-1, and GX 13+1 -- illustrated by sequences of CD/HID tracks we construct -- arises from changes in the mass accretion rate. Our results strengthen previous suggestions that within single sources Cyg-like Z source behavior takes place at higher luminosities and mass accretion rates than Sco-like Z behavior, and lend support to the notion that the mass accretion rate is the primary physical parameter distinguishing the various NS-LMXB subclasses.Comment: 20 pages, 14 figures, 5 tables -- matches published version in Ap

    On the geometric nature of low-frequency quasi-periodic oscillations in neutron-star low-mass X-ray binaries

    Get PDF
    We report on a detailed analysis of the so-called ~1 Hz quasi-periodic oscillation (QPO) in the eclipsing and dipping neutron-star low-mass X-ray binary EXO 0748-676. This type of QPO has previously been shown to have a geometric origin. Our study focuses on the evolution of the QPO as the source moves through the color-color diagram, in which it traces out an atoll-source-like track. The QPO frequency increases from ~0.4 Hz in the hard state to ~25 Hz as the source approaches the soft state. Combining power spectra based on QPO frequency reveals additional features that strongly resemble those seen in non-dipping/eclipsing atoll sources. We show that the low-frequency QPOs in atoll sources and the ~1 Hz QPO in EXO 0748-676 follow similar relations with respect to the noise components in their power spectra. We conclude that the frequencies of both types of QPOs are likely set by (the same) precession of a misaligned inner accretion disk. For high-inclination systems, like EXO 0748-676, this results in modulations of the neutron-star emission due to obscuration or scattering, while for lower-inclination systems the modulations likely arise from relativistic Doppler boosting and light-bending effects.Comment: Updated to published version (ApJ, 812, 80

    Discovery of the near-infrared counterpart to the luminous neutron-star low-mass X-ray binary GX 3+1

    Get PDF
    Using the High Resolution Camera onboard the Chandra X-ray Observatory, we have measured an accurate position for the bright persistent neutron-star X-ray binary and atoll source GX 3+1. At a location that is consistent with this new position we have discovered the near-infrared (NIR) counterpart to GX 3+1 in images taken with the PANIC and FourStar cameras on the Magellan Baade Telescope. The identification of this K_s=15.8+-0.1 mag star as the counterpart is based on the presence of a Br-gamma emission line in a NIR spectrum taken with the FIRE spectrograph on the Baade Telescope. The absolute magnitude derived from the best available distance estimate to GX 3+1 indicates that the mass donor in the system is not a late-type giant. We find that the NIR light in GX 3+1 is likely dominated by the contribution from a heated outer accretion disk. This is similar to what has been found for the NIR flux from the brighter class of Z sources, but unlike the behavior of atolls fainter (Lx ~ 1e36 to 1e37 erg/s) than GX 3+1, where optically-thin synchrotron emission from a jet probably dominates the NIR flux.Comment: Accepted for publication in Ap

    A strongly heated neutron star in the transient Z source MAXI J0556-332

    Get PDF
    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color--color and hardness--intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ~16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46+/-15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45+/-3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 Msun. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ~500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power-law (kT_eff=184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (~200 days) is similar to other sources. Fits without a power-law yield higher temperatures (kT_eff=190-336 eV) and a shorter e-folding time (~160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.Comment: Accepted for publication: 2014, ApJ, 795, 131 (13 pages

    Evidence for simultaneous jets and disk winds in luminous low-mass X-ray binaries

    Get PDF
    Recent work on jets and disk winds in low-mass X-ray binaries (LMXBs) suggests that they are to a large extent mutually exclusive, with jets observed in spectrally hard states and disk winds observed in spectrally soft states. In this paper we use existing literature on jets and disk winds in the luminous neutron star (NS) LMXB GX 13+1, in combination with archival Rossi X-ray Timing Explorer data, to show that this source is likely able to produce jets and disk winds simultaneously. We find that jets and disk winds occur in the same location on the source's track in its X-ray color-color diagram. A further study of literature on other luminous LMXBs reveals that this behavior is more common, with indications for simultaneous jets and disk winds in the black hole LMXBs V404 Cyg and GRS 1915+105 and the NS LMXBs Sco X-1 and Cir X-1. For the three sources for which we have the necessary spectral information, we find that the simultaneous jets/winds all occur in their spectrally hardest states. Our findings indicate that in LMXBs with luminosities above a few tens of percent of the Eddington luminosity, jets and disk winds are not mutually exclusive, and that the presence of disk winds does not necessarily result in jet suppression.Comment: Updated to match published version (2016, ApJ, 830, L5

    The Variable Quiescent X-ray Emission of the Neutron Star Transient XTE J1701-462

    Get PDF
    We present the results of continued monitoring of the quiescent neutron star low-mass X-ray binary XTE J1701-462 with Chandra and Swift. A new Chandra observation from 2010 October extends our tracking of the neutron star surface temperature from ~800 days to ~1160 days since the end of an exceptionally luminous 19 month outburst. This observation indicates that the neutron star crust may still be slowly cooling toward thermal equilibrium with the core; another observation further into quiescence is needed to verify this. The shape of the overall cooling curve is consistent with that of a broken power law, although an exponential decay to a constant level cannot be excluded with the present data. To investigate possible low-level activity, we conducted a monitoring campaign of XTE J1701-462 with Swift during 2010 April-October. Short-term flares - presumably arising from episodic low-level accretion - were observed up to a luminosity of ~1e35 erg/s, ~20 times higher than the normal quiescent level. We conclude that flares of this magnitude are not likely to have significantly affected the equilibrium temperature of the neutron star and are probably not able to have a measurable impact on the cooling curve. However, it is possible that brighter and longer periods of low-level activity have had an appreciable effect on the equilibrium temperature.Comment: 14 pages, 4 figures - matches published version except for a slight difference in the title due to an ApJ proofreader's mistak

    XTE J1701-462 and its Implications for the Nature of Subclasses in Low-Magnetic-Field Neutron Star Low-Mass X-Ray Binaries

    Get PDF
    We report on an analysis of RXTE data of the transient neutron star low-mass X-ray binary (NS-LMXB) XTE J1701-462, obtained during its 2006-2007 outburst. The X-ray properties of the source changed between those of various types of NS-LMXB subclasses. At high luminosities the source switched between two types of Z source behavior and at low luminosities we observed a transition from Z source to atoll source behavior. These transitions between subclasses primarily manifest themselves as changes in the shapes of the tracks in X-ray color-color and hardness-intensity diagrams, but they are accompanied by changes in the kHz quasi-periodic oscillations, broad-band variability, burst behavior, and/or X-ray spectra. We find that the low-energy X-ray flux is a good parameter to track the gradual evolution of the tracks in color-color and hardness-intensity diagrams, allowing us to resolve the evolution of the source in greater detail than before and relate the observed properties to other NS-LMXBs. We further find that during the transition from Z to atoll, characteristic behavior known as the atoll upper banana can equivalently be described as the final stage of a weakening Z source flaring branch, thereby blurring the line between the two subclasses. Our findings strongly suggest that the wide variety in behavior observed in NS-LXMBs with different luminosities can be linked through changes in a single variable parameter, namely the mass accretion rate, without the need for additional differences in the neutron star parameters or viewing angle. We briefly discuss the implications of our findings for the spectral changes observed in NS LMXBs and suggest that, contrary to what is often assumed, the position along the color-color tracks of Z sources is not determined by the instantaneous mass accretion rate.Comment: Submitted to ApJ, comments are welcome. 13 pages, 8 figure

    The Long-Term Variability of the X-Ray Sources in NGC 6946 and NGC 4485/4490

    Full text link
    We analyze data from five Chandra observations of the spiral galaxy NGC 6946 and from three Chandra observations of the irregular/spiral interacting galaxy pair NGC 4485/4490, with an emphasis on investigating the long-term variability exhibited by the source populations. We detect 90 point sources coincident with NGC 6946 down to luminosities of a few times 10^36 erg/s, and 38 sources coincident with NGC 4485/90 down to a luminosity of ~1x10^37 erg/s. Twenty-five (15) sources in NGC 6946 (NGC 4485/90) exhibit long-term (i.e., weeks to years) variability in luminosity; 11 (4) are transient candidates. The single ultraluminous X-ray source (ULX) in NGC 6946 and all but one of the eight ULXs in NGC 4485/90 exhibit long-term flux variability. Two of the ULXs in NGC 4485/90 have not been identified before as ultraluminous sources. The widespread variability in both systems is indicative of the populations being dominated by X-ray binaries, and this is supported by the X-ray colors of the sources. The distribution of colors among the sources indicates a large fraction of high-mass X-ray binaries in both systems. The shapes of the X-ray luminosity functions of the galaxies do not change significantly between observations and can be described by power laws with cumulative slopes ~0.6-0.7 (NGC 6946) and ~0.4 (NGC 4485/90).Comment: 26 pages, 9 figures, 15 tables - to appear in the August 2008 issue of ApJS - new version corrects a few typo
    corecore