77 research outputs found
Male or Female? Brains are Intersex
The underlying assumption in popular and scientific publications on sex differences in the brain is that human brains can take one of two forms “male” or “female,” and that the differences between these two forms underlie differences between men and women in personality, cognition, emotion, and behavior. Documented sex differences in brain structure are typically taken to support this dimorphic view of the brain. However, neuroanatomical data reveal that sex interacts with other factors in utero and throughout life to determine the structure of the brain, and that because these interactions are complex, the result is a multi-morphic, rather than a dimorphic, brain. More specifically, here I argue that human brains are composed of an ever-changing heterogeneous mosaic of “male” and “female” brain characteristics (rather than being all “male” or all “female”) that cannot be aligned on a continuum between a “male brain” and a “female brain.” I further suggest that sex differences in the direction of change in the brain mosaic following specific environmental events lead to sex differences in neuropsychiatric disorders
Assault-related self-blame and its association with PTSD in sexually assaulted women: an MRI inquiry
Reinforcement Learning Signals in the Human Striatum Distinguish Learners from Nonlearners during Reward-Based Decision Making
The computational framework of reinforcement learning has been used to forward our understanding of the neural mechanisms underlying reward learning and decision-making behavior. It is known that humans vary widely in their performance in decision-making tasks. Here, we used a simple four-armed bandit task in which subjects are almost evenly split into two groups on the basis of their performance: those who do learn to favor choice of the optimal action and those who do not. Using models of reinforcement learning we sought to determine the neural basis of these intrinsic differences in performance by scanning both groups with functional magnetic resonance imaging. We scanned 29 subjects while they performed the reward-based decision-making task. Our results suggest that these two groups differ markedly in the degree to which reinforcement learning signals in the striatum are engaged during task performance. While the learners showed robust prediction error signals in both the ventral and dorsal striatum during learning, the nonlearner group showed a marked absence of such signals. Moreover, the magnitude of prediction error signals in a region of dorsal striatum correlated significantly with a measure of behavioral performance across all subjects. These findings support a crucial role of prediction error signals, likely originating from dopaminergic midbrain neurons, in enabling learning of action selection preferences on the basis of obtained rewards. Thus, spontaneously observed individual differences in decision making performance demonstrate the suggested dependence of this type of learning on the functional integrity of the dopaminergic striatal system in humans
Genetic-gonadal-genitals sex (3G-sex) and the misconception of brain and gender, or, why 3G-males and 3G-females have intersex brain and intersex gender
Abstract The categorization of individuals as “male” or “female” is based on chromosome complement and gonadal and genital phenotype. This combined genetic-gonadal-genitals sex, here referred to as 3G-sex, is internally consistent in ~99% of humans (i.e., one has either the “female” form at all levels, or the “male” form at all levels). About 1% of the human population is identified as “intersex” because of either having an intermediate form at one or more levels, or having the “male” form at some levels and the “female” form at other levels. These two types of “intersex” reflect the facts, respectively, that the different levels of 3G-sex are not completely dimorphic nor perfectly consistent. Using 3G-sex as a model to understand sex differences in other domains (e.g., brain, behavior) leads to the erroneous assumption that sex differences in these other domains are also highly dimorphic and highly consistent. But parallel lines of research have led to the conclusion that sex differences in the brain and in behavior, cognition, personality, and other gender characteristics are for the most part not dimorphic and not internally consistent (i.e., having one brain/gender characteristic with the “male” form is not a reliable predictor for the form of other brain/gender characteristics). Therefore although only ~1% percent of humans are 3G-“intersex”, when it comes to brain and gender, we all have an intersex gender (i.e., an array of masculine and feminine traits) and an intersex brain (a mosaic of “male” and “female” brain characteristics).</p
- …