4 research outputs found
High-throughput impact characterization of mechanical properties in combinatorially prepared segmented polyurethaneurea elastomers
M.S.J. Carson Meredit
Combinatorial Synthesis and High-Throughput Characterization of Polyurethaneureas and Their Nanocomposites with Laponite
Segmented polyurethaneureas (SPUU) are thermoplastic elastomers with excellent elastic properties, high abrasion resistance and tear strength, making them very useful in numerous industrial applications ranging from microelectronics (slurry pad) to biomedical (artificial heart vessels) applications. The elastic and mechanical properties of these materials are strongly influenced by their two phase morphology. The factors that influence phase separation include difference in polarity between the hard and soft phases, composition and temperature. In general good phase separation results in materials with superior mechanical and elastic properties. Due to the immense potential applications of SPUU elastomers, there is a need for materials with higher strength. However, higher strength is not desired at the detriment of elasticity. If fact, stronger materials with enhanced elasticity are desired. In this thesis, high-strength SPUU elastomers were synthesized by incorporating reactive Laponite particles with surface-active free amine. The synthesis of pure SPUU is very complex, and addition of a reactive silicate further increases the complexity. To remedy this challenge, combinatorial methods and high-throughput screening techniques were used to optimize the diamine concentration and cure temperature. It was determined that pure SPUU elastomers prepared at a diamine stoichiometry of 85 100 mole %, and cured at 90 95 oC produced materials with higher strength and elongation at break. SPUU nanocomposites were prepared by maintaining the overall diamine stoichiometry at 95 mole %, and cured at 90 oC. Uniaxial tensile strength was optimized at a particle weight fraction of 1 wt. %, with a nearly 200 % increase in tensile strength and a 40 % increase in elongation at break, compared to pristine SPUU.Ph.D.Committee Chair: Dr. J. Carson Meredith; Committee Member: Dr. F. Joseph Schork; Committee Member: Dr. Mohan Srinivasarao; Committee Member: Dr. Peter J. Ludovice; Committee Member: Dr. William J. Koro
Mechanical and Thermal Properties of Poly(urethane urea) Nanocomposites Prepared with Diamine-Modified Laponite
Nanocomposites based on segmented poly(urethane urea) were prepared by reacting a poly(diisocyanate) with diamine-modified Laponite-RD nanoparticles that served as a chain extender. The nanocomposites were prepared at a constant NH2 to NCO mole ratio of 0.95, while varying the fraction of diamine-modified Laponite relative to the free diamine chain extender. Compared to neat poly(urethane urea), all nanocomposites showed increased tensile strength and elongation at break. As Laponite loading increased, tensile properties passed through a maximum at a particle concentration of 1 mass%, at which a 300% increase in tensile strength and 40% increase in elongation at break were observed. A maximum in urea and urethane hard-domain melting endotherms was also observed at this Laponite loading. Optimal mechanical and thermal properties coincided with a minimum in the size of the inorganic Laponite phase. Nanocomposites containing diamine-modified Laponite had higher tensile strengths than those with nonreactive monoamine-modified Laponite or diamine-modified Cloisite