3 research outputs found

    The effect of groove texture patterns on piston-ring pack friction

    Get PDF
    A cylinder liner possesses fairly intricate surface requirements due to its complicated functions. It needs to provide adequate surface roughness to resist wear as well as to store and retain lubricants during high temperatures. The liner surface texture is anisotropic, produced by the honing process, with resultant deep visible scratches left on it [1]. The prominence of the honing grooves observed suggests that surface texture significantly affects ring-pack performance, although this effect is not clearly understood. In this paper, a numerical model was developed to investigate the effects of groove characteristics on the lubrication condition and friction at the interface between the piston ring and cylinder liner. This model aims to solve the average Reynolds equation, which depends on the real surface topographies of the cylinder liner, and describes the influence of surface irregularities on the lubricant flow under hydrodynamic lubrication conditions, considering lubricant film rupture and cavitations. Numerical results help to determine the optimum lateral groove characteristics to reduce friction and then noxious emissions
    corecore