2 research outputs found

    Fermion Proca Stars: Vector Dark Matter Admixed Neutron Stars

    Full text link
    Dark matter could accumulate around neutron stars in sufficient amounts to affect their global properties. In this work, we study the effect of a specific model for dark matter -- a massive and self-interacting vector (spin-1) field -- on neutron stars. We describe the combined systems of neutron stars and vector dark matter using Einstein-Proca theory coupled to a nuclear-matter term, and find scaling relations between the field and metric components in the equations of motion. We construct equilibrium solutions of the combined systems, compute their masses and radii and also analyse their stability and higher modes. The combined systems admit dark matter (DM) core and cloud solutions. Core solutions compactify the neutron star component and tend to decrease the total mass of the combined system. Cloud solutions have the inverse effect. Electromagnetic observations of certain cloud-like configurations would appear to violate the Buchdahl limit. This could make Buchdahl-limit violating objects smoking gun signals for dark matter in neutron stars. The self-interaction strength is found to significantly affect both mass and radius. We also compare fermion Proca stars to objects where the dark matter is modelled using a complex scalar field. We find that fermion Proca stars tend to be more massive and geometrically larger than their scalar field counterparts for equal boson masses and self-interaction strengths. Both systems can produce degenerate masses and radii for different amounts of DM and DM particle masses.Comment: 20 pages, 11 figures, superseeds arXiv:2308.1217

    Tidal Deformability of Fermion-Boson Stars: Neutron Stars Admixed with Ultra-Light Dark Matter

    Full text link
    In this work we investigate the tidal deformability of a neutron star admixed with dark matter, modeled as a massive, self-interacting, complex scalar field. We derive the equations to compute the tidal deformability of the full Einstein-Hilbert-Klein-Gordon system self-consistently, and probe the influence of the scalar field mass and self-interaction strength on the total mass and tidal properties of the combined system. We find that dark matter core-like configurations lead to more compact objects with smaller tidal deformability, and dark matter cloud-like configurations lead to larger tidal deformability. Electromagnetic observations of certain cloud-like configurations would appear to violate the Buchdahl limit. The self-interaction strength is found to have a significant effect on both mass and tidal deformability. We discuss observational constraints and the connection to anomalous detections. We also investigate how this model compares to those with an effective bosonic equation of state and find the interaction strength where they converge sufficiently.Comment: 14 pages, 7 figures; Accepted for publicatio
    corecore