55 research outputs found
Can subunit-specific phenotypes guide surveillance imaging decisions in asymptomatic SDH mutation carriers?
Objective
With the discovery that familial phaeochromocytoma and paraganglioma syndrome can be caused by mutations in each subunit of the succinate dehydrogenase enzyme (SDH), has come the recognition that mutations in the individual subunits have their own distinct natural histories. Increased genetic screening is leading to the identification of increasing numbers of, mostly asymptomatic, gene mutation carriers and the implementation of screening strategies for these individuals. Yet there is, to date, no international consensus regarding screening strategies for asymptomatic carriers.
Design
A comprehensive PubMed search from 1/1/2000 to 28/2/2018 was undertaken using multiple search terms and subsequently a manual review of references in identified papers to identify all clinically relevant cases and cohorts. In this review, the accumulated, published experience of phenotype and malignancy risks of individual SDH subunits is analysed. Where possible screening results for asymptomatic SDH mutation carriers have been analysed separately to define the penetrance in asymptomatic carriers (asymptomatic penetrance).
Results
The combined data confirms that âasymptomatic penetranceâ is highest for SDHD and when there is penetrance, the most likely site to develop a PGL is head and neck (SDHD) and extraâadrenal abdominal (SDHB). However, the risk in SDHB carriers of developing HNPGL is also high (35.5%) and a PCC is low (15.1%), and in SDHD carriers there is a high risk of developing a PCC (35.8%) or abdominal PGL (9.4%) and a small, but significant risk at other sympathetic sites. The data suggest that the risk of malignant transformation is the same for both PCC and extraâadrenal abdominal PGLs (30%â35%) in SDHB carriers. In SDHD carriers, the risk of malignant transformation was highest in HNPGLs (7.5%) and similar for sympathetic sites (3.8%â5.2%).
Conclusions
Using this data, we suggest surveillance screening of asymptomatic carriers can be tailored to the underlying SDH subunit and review possible surveillance programmes
A Combination of CD28 (rs1980422) and IRF5 (rs10488631) Polymorphisms Is Associated with Seropositivity in Rheumatoid Arthritis: A Case Control Study.
INTRODUCTION:The aim of the study was to analyse genetic architecture of RA by utilizing multiparametric statistical methods such as linear discriminant analysis (LDA) and redundancy analysis (RDA). METHODS:A total of 1393 volunteers, 499 patients with RA and 894 healthy controls were included in the study. The presence of shared epitope (SE) in HLA-DRB1 and 11 SNPs (PTPN22 C/T (rs2476601), STAT4 G/T (rs7574865), CTLA4 A/G (rs3087243), TRAF1/C5 A/G (rs3761847), IRF5 T/C (rs10488631), TNFAIP3 C/T (rs5029937), AFF3 A/T (rs11676922), PADI4 C/T (rs2240340), CD28 T/C (rs1980422), CSK G/A (rs34933034) and FCGR3A A/C (rs396991), rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPA) and clinical status was analysed using the LDA and RDA. RESULTS:HLA-DRB1, PTPN22, STAT4, IRF5 and PADI4 significantly discriminated between RA patients and healthy controls in LDA. The correlation between RA diagnosis and the explanatory variables in the model was 0.328 (Trace = 0.107; F = 13.715; P = 0.0002). The risk variants of IRF5 and CD28 genes were found to be common determinants for seropositivity in RDA, while positivity of RF alone was associated with the CTLA4 risk variant in heterozygous form. The correlation between serologic status and genetic determinants on the 1st ordinal axis was 0.468, and 0.145 on the 2nd one (Trace = 0.179; F = 6.135; P = 0.001). The risk alleles in AFF3 gene together with the presence of ACPA were associated with higher clinical severity of RA. CONCLUSIONS:The association among multiple risk variants related to T cell receptor signalling with seropositivity may play an important role in distinct clinical phenotypes of RA. Our study demonstrates that multiparametric analyses represent a powerful tool for investigation of mutual relationships of potential risk factors in complex diseases such as RA
The Significant Reduction or Complete Eradication of Subcutaneous and Metastatic Lesions in a Pheochromocytoma Mouse Model after Immunotherapy Using Mannan-BAM, TLR Ligands, and Anti-CD40
Therapeutic options for metastatic pheochromocytoma/paraganglioma (PHEO/PGL) are limited. Here, we tested an immunotherapeutic approach based on intratumoral injections of mannan-BAM with toll-like receptor ligands into subcutaneous PHEO in a mouse model. This therapy elicited a strong innate immunity-mediated antitumor response and resulted in a significantly lower PHEO volume compared to the phosphate buffered saline (PBS)-treated group and in a significant improvement in mice survival. The cytotoxic effect of neutrophils, as innate immune cells predominantly infiltrating treated tumors, was verified in vitro. Moreover, the combination of mannan-BAM and toll-like receptor ligands with agonistic anti-CD40 was associated with increased mice survival. Subsequent tumor re-challenge also supported adaptive immunity activation, reflected primarily by long-term tumor-specific memory. These results were further verified in metastatic PHEO, where the intratumoral injections of mannan-BAM, toll-like receptor ligands, and anti-CD40 into subcutaneous tumors resulted in significantly less intense bioluminescence signals of liver metastatic lesions induced by tail vein injection compared to the PBS-treated group. Subsequent experiments focusing on the depletion of T cell subpopulations confirmed the crucial role of CD8+ T cells in inhibition of bioluminescence signal intensity of liver metastatic lesions. These data call for a new therapeutic approach in patients with metastatic PHEO/PGL using immunotherapy that initially activates innate immunity followed by an adaptive immune response
Hypoxia-Inducible Factor 2α Mutation-Related Paragangliomas Classify as Discrete Pseudohypoxic Subcluster
Recently, activating mutations of the hypoxia-inducible factor 2α gene (HIF2A/EPAS1) have been recognized to predispose to multiple paragangliomas (PGLs) and duodenal somatostatinomas associated with polycythemia, and ocular abnormalities. Previously, mutations in the SDHA/B/C/D, SDHAF2, VHL, FH, PHD1, and PHD2 genes have been associated with HIF activation and the development of pseudohypoxic (cluster-1) PGLs. These tumors overlap in terms of tumor location, syndromic presentation, and noradrenergic phenotype to a certain extent. However, they also differ especially by clinical outcome and by presence of other tumors or abnormalities. In the present study, we aimed to establish additional molecular differences between HIF2A and non-HIF2A pseudohypoxic PGLs. RNA expression patterns of HIF2A PGLs (n = 6) from 2 patients were compared with normal adrenal medullas (n = 8) and other hereditary pseudohypoxic PGLs (VHL: n = 13, SDHB: n = 15, and SDHD: n = 14). Unsupervised hierarchical clustering showed that HIF2A PGLs made up a separate cluster from other pseudohypoxic PGLs. Significance analysis of microarray yielded 875 differentially expressed genes between HIF2A and other pseudohypoxic PGLs after normalization to adrenal medulla (false discovery rate 0.01). Prediction analysis of microarray allowed correct classification of all HIF2A samples based on as little as three genes (TRHDE, LRRC63, IGSF10; error rate: 0.02). Genes with the highest expression difference between normal medulla and HIF2A PGLs were selected for confirmatory quantitative reverse transcriptase polymerase chain reaction. In conclusion, HIF2A PGLs show a characteristic expression signature that separates them from non-HIF2A pseudohypoxic PGLs. Unexpectedly, the most significantly differentially expressed genes have not been previously described as HIF target genes
- âŠ