62 research outputs found

    The midgut transcriptome of Phlebotomus (Larroussius) perniciosus, a vector of Leishmania infantum: comparison of sugar fed and blood fed sand flies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parasite-vector interactions are fundamental in the transmission of vector-borne diseases such as leishmaniasis. <it>Leishmania </it>development in the vector sand fly is confined to the digestive tract, where sand fly midgut molecules interact with the parasites. In this work we sequenced and analyzed two midgut-specific cDNA libraries from sugar fed and blood fed female <it>Phlebotomus perniciosus </it>and compared the transcript expression profiles.</p> <p>Results</p> <p>A total of 4111 high quality sequences were obtained from the two libraries and assembled into 370 contigs and 1085 singletons. Molecules with putative roles in blood meal digestion, peritrophic matrix formation, immunity and response to oxidative stress were identified, including proteins that were not previously reported in sand flies. These molecules were evaluated relative to other published sand fly transcripts. Comparative analysis of the two libraries revealed transcripts differentially expressed in response to blood feeding. Molecules up regulated by blood feeding include a putative peritrophin (<it>PperPer1</it>), two chymotrypsin-like proteins (<it>PperChym1 </it>and <it>PperChym2</it>), a putative trypsin (<it>PperTryp3</it>) and four putative microvillar proteins (<it>PperMVP1</it>, <it>2</it>, <it>4 </it>and <it>5</it>). Additionally, several transcripts were more abundant in the sugar fed midgut, such as two putative trypsins (<it>PperTryp1 </it>and <it>PperTryp2</it>), a chymotrypsin (<it>PperChym3</it>) and a microvillar protein (<it>PperMVP3</it>). We performed a detailed temporal expression profile analysis of the putative trypsin transcripts using qPCR and confirmed the expression of blood-induced and blood-repressed trypsins. Trypsin expression was measured in <it>Leishmania infantum</it>-infected and uninfected sand flies, which identified the <it>L. infantum</it>-induced down regulation of <it>PperTryp3 </it>at 24 hours post-blood meal.</p> <p>Conclusion</p> <p>This midgut tissue-specific transcriptome provides insight into the molecules expressed in the midgut of <it>P. perniciosus</it>, an important vector of visceral leishmaniasis in the Old World. Through the comparative analysis of the libraries we identified molecules differentially expressed during blood meal digestion. Additionally, this study provides a detailed comparison to transcripts of other sand flies. Moreover, our analysis of putative trypsins demonstrated that <it>L. infantum </it>infection can reduce the transcript abundance of trypsin <it>PperTryp3 </it>in the midgut of <it>P. perniciosus</it>.</p

    The Transcriptome of Lutzomyia longipalpis (Diptera: Psychodidae) Male Reproductive Organs

    Get PDF
    BACKGROUND: It has been suggested that genes involved in the reproductive biology of insect disease vectors are potential targets for future alternative methods of control. Little is known about the molecular biology of reproduction in phlebotomine sand flies and there is no information available concerning genes that are expressed in male reproductive organs of Lutzomyia longipalpis, the main vector of American visceral leishmaniasis and a species complex. METHODS/PRINCIPAL FINDINGS: We generated 2678 high quality ESTs ("Expressed Sequence Tags") of L. longipalpis male reproductive organs that were grouped in 1391 non-redundant sequences (1136 singlets and 255 clusters). BLAST analysis revealed that only 57% of these sequences share similarity with a L. longipalpis female EST database. Although no more than 36% of the non-redundant sequences showed similarity to protein sequences deposited in databases, more than half of them presented the best-match hits with mosquito genes. Gene ontology analysis identified subsets of genes involved in biological processes such as protein biosynthesis and DNA replication, which are probably associated with spermatogenesis. A number of non-redundant sequences were also identified as putative male reproductive gland proteins (mRGPs), also known as male accessory gland protein genes (Acps). CONCLUSIONS: The transcriptome analysis of L. longipalpis male reproductive organs is one step further in the study of the molecular basis of the reproductive biology of this important species complex. It has allowed the identification of genes potentially involved in spermatogenesis as well as putative mRGPs sequences, which have been studied in many insect species because of their effects on female post-mating behavior and physiology and their potential role in sexual selection and speciation. These data open a number of new avenues for further research in the molecular and evolutionary reproductive biology of sand flies

    Salivary Gland Transcriptomes and Proteomes of Phlebotomus tobbi and Phlebotomus sergenti, Vectors of Leishmaniasis

    Get PDF
    Phlebotomine female sand flies require a blood meal for egg development, and it is during the blood feeding that pathogens can be transmitted to a host. Leishmania parasites are among these pathogens and can cause disfiguring cutaneous or even possibly fatal visceral disease. The Leishmania parasites are deposited into the bite wound along with the sand fly saliva. The components of the saliva have many pharmacologic and immune functions important in blood feeding and disease establishment. In this article, the authors identify and investigate the protein components of saliva of two important vectors of leishmaniasis, Phlebotomus tobbi and P. sergenti, by sequencing the transcriptomes of the salivary glands. We then compared the predicted protein sequences of these salivary proteins to those of other bloodsucking insects to elucidate the similarity in composition, structure, and enzymatic activity. Finally, this descriptive analysis of P. tobbi and P. sergenti transcriptomes can aid future research in identifying molecules for epidemiologic assays and in investigating sand fly-host interactions

    Small molecules, big targets: drug discovery faces the protein-protein interaction challenge.

    Get PDF
    Protein-protein interactions (PPIs) are of pivotal importance in the regulation of biological systems and are consequently implicated in the development of disease states. Recent work has begun to show that, with the right tools, certain classes of PPI can yield to the efforts of medicinal chemists to develop inhibitors, and the first PPI inhibitors have reached clinical development. In this Review, we describe the research leading to these breakthroughs and highlight the existence of groups of structurally related PPIs within the PPI target class. For each of these groups, we use examples of successful discovery efforts to illustrate the research strategies that have proved most useful.JS, DES and ARB thank the Wellcome Trust for funding.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nrd.2016.2

    Integrating Archaeological Theory and Predictive Modeling: a Live Report from the Scene

    Full text link

    Reactive oxygen species scavenging by catalase is important for female lutzomyia longipalpis fecundity and mortality

    Get PDF
    The phlebotomine sand fly Lutzomyia longipalpis is the most important vector of American visceral leishmaniasis (AVL), the disseminated and most serious form of the disease in Central and South America. In the natural environment, most female L. longipalpis are thought to survive for less than 10 days and will feed on blood only once or twice during their lifetime. Successful transmission of parasites occurs when a Leishmania-infected female sand fly feeds on a new host. Knowledge of factors affecting sand fly longevity that lead to a reduction in lifespan could result in a decrease in parasite transmission. Catalase has been found to play a major role in survival and fecundity in many insect species. It is a strong antioxidant enzyme that breaks down toxic reactive oxygen species (ROS). Ovarian catalase was found to accumulate in the developing sand fly oocyte from 12 to 48 hours after blood feeding. Catalase expression in ovaries as well as oocyte numbers was found to decrease with age. This reduction was not found in flies when fed on the antioxidant ascorbic acid in the sugar meal, a condition that increased mortality and activation of the prophenoloxidase cascade. RNA interference was used to silence catalase gene expression in female Lu. longipalpis. Depletion of catalase led to a significant increase of mortality and a reduction in the number of developing oocytes produced after blood feeding. These results demonstrate the central role that catalase and ROS play in the longevity and fecundity of phlebotomine sand flies
    corecore