6 research outputs found

    Dumbbell diffusion in a spatially periodic potential

    Full text link
    We present a numerical investigation of the Brownian motion and diffusion of a dumbbell in a two-dimensional periodic potential. Its dynamics is described by a Langevin model including the hydrodynamic interaction. With increasing values of the amplitude of the potential we find along the modulated spatial directions a reduction of the diffusion constant and of the impact of the hydrodynamic interaction. For modulation amplitudes of the potential in the range of the thermal energy the dumbbell diffusion exhibits a pronounced local maximum at a wavelength of about 3/2 of the dumbbell extension. This is especially emphasized for stiff springs connecting the two beads.Comment: 4 pages, 7 figures, published in Phys. Rev. E (2008

    The probability distribution of a trapped Brownian particle in plane shear flows

    Full text link
    We investigate the statistical properties of an over-damped Brownian particle that is trapped by a harmonic potential and simultaneously exposed to a linear shear flow or to a plane Poiseuille flow. Its probability distribution is determined via the corresponding Smoluchowski equation, which is solved analytically for a linear shear flow. In the case of a plane Poiseuille flow, analytical approximations for the distribution are obtained by a perturbation analysis and they are substantiated by numerical results. There is a good agreement between the two approaches for a wide range of parameters.Comment: 5 pages, 4 figur

    Dynamics of a trapped Brownian particle in shear flows

    Full text link
    The Brownian motion of a particle in a harmonic potential, which is simultaneously exposed either to a linear shear flow or to a plane Poiseuille flow is investigated. In the shear plane of both flows the probability distribution of the particle becomes anisotropic and the dynamics is changed in a characteristic manner compared to a trapped particle in a quiescent fluid. The particle distribution takes either an elliptical or a parachute shape or a superposition of both depending on the mean particle position in the shear plane. Simultaneously, shear-induced cross-correlations between particle fluctuations along orthogonal directions in the shear plane are found. They are asymmetric in time. In Poiseuille flow thermal particle fluctuations perpendicular to the flow direction in the shear plane induce a shift of the particle's mean position away from the potential minimum. Two complementary methods are suggested to measure shear-induced cross-correlations between particle fluctuations along orthogonal directions.Comment: 14 pages, 7 figure
    corecore