3 research outputs found

    A multi-disciplinary commentary on preclinical research to investigate vascular contributions to dementia

    Get PDF
    Although dementia research has been dominated by Alzheimer's disease (AD), most dementia in older people is now recognised to be due to mixed pathologies, usually combining vascular and AD brain pathology. Vascular cognitive impairment (VCI), which encompasses vascular dementia (VaD) is the second most common type of dementia. Models of VCI have been delayed by limited understanding of the underlying aetiology and pathogenesis. This review by a multidisciplinary, diverse (in terms of sex, geography and career stage), cross-institute team provides a perspective on limitations to current VCI models and recommendations for improving translation and reproducibility. We discuss reproducibility, clinical features of VCI and corresponding assessments in models, human pathology, bioinformatics approaches, and data sharing. We offer recommendations for future research, particularly focusing on small vessel disease as a main underpinning disorder

    Neuroimaging standards for research into small vessel disease-advances since 2013

    No full text
    Cerebral small vessel disease (SVD) is common during ageing and can present as stroke, cognitive decline, neurobehavioural symptoms, or functional impairment. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive and other symptoms and affect activities of daily living. Standards for Reporting Vascular Changes on Neuroimaging 1 (STRIVE-1) categorised and standardised the diverse features of SVD that are visible on structural MRI. Since then, new information on these established SVD markers and novel MRI sequences and imaging features have emerged. As the effect of combined SVD imaging features becomes clearer, a key role for quantitative imaging biomarkers to determine sub-visible tissue damage, subtle abnormalities visible at high-field strength MRI, and lesion-symptom patterns, is also apparent. Together with rapidly emerging machine learning methods, these metrics can more comprehensively capture the effect of SVD on the brain than the structural MRI features alone and serve as intermediary outcomes in clinical trials and future routine practice. Using a similar approach to that adopted in STRIVE-1, we updated the guidance on neuroimaging of vascular changes in studies of ageing and neurodegeneration to create STRIVE-2
    corecore