9 research outputs found

    Peripheral administration of lactate produces antidepressant-like effects.

    Get PDF
    In addition to its role as metabolic substrate that can sustain neuronal function and viability, emerging evidence supports a role for l-lactate as an intercellular signaling molecule involved in synaptic plasticity. Clinical and basic research studies have shown that major depression and chronic stress are associated with alterations in structural and functional plasticity. These findings led us to investigate the role of l-lactate as a potential novel antidepressant. Here we show that peripheral administration of l-lactate produces antidepressant-like effects in different animal models of depression that respond to acute and chronic antidepressant treatment. The antidepressant-like effects of l-lactate are associated with increases in hippocampal lactate levels and with changes in the expression of target genes involved in serotonin receptor trafficking, astrocyte functions, neurogenesis, nitric oxide synthesis and cAMP signaling. Further elucidation of the mechanisms underlying the antidepressant effects of l-lactate may help to identify novel therapeutic targets for the treatment of depression

    Antidepressant-like effects of cannabidiol in mice: possible involvement of 5-HT1A receptors

    No full text
    Background and purpose: Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that induces anxiolytic- and antipsychotic-like effects in animal models. Effects of CBD may be mediated by the activation of 5-HT(1A) receptors. As 5-HT(1A) receptor activation may induce antidepressant-like effects, the aim of this work was to test the hypothesis that CBD would have antidepressant-like activity in mice as assessed by the forced swimming test. We also investigated if these responses depended on the activation of 5-HT(1A) receptors and on hippocampal expression of brain-derived neurotrophic factor (BDNF). Experimental approach: Male Swiss mice were given (i.p.) CBD (3, 10, 30, 100 mg.kg(-1)), imipramine (30 mg.kg(-1)) or vehicle and were submitted to the forced swimming test or to an open field arena, 30 min later. An additional group received WAY100635 (0.1 mg.kg(-1), i.p.), a 5-HT(1A) receptor antagonist, before CBD (30 mg.kg(-1)) and assessment by the forced swimming test. BDNF protein levels were measured in the hippocampus of another group of mice treated with CBD (30 mg.kg(-1)) and submitted to the forced swimming test. Key results: CBD (30 mg.kg(-1)) treatment reduced immobility time in the forced swimming test, as did the prototype antidepressant imipramine, without changing exploratory behaviour in the open field arena. WAY100635 pretreatment blocked CBD-induced effect in the forced swimming test. CBD (30 mg.kg(-1)) treatment did not change hippocampal BDNF levels. Conclusion and implications: CBD induces antidepressant-like effects comparable to those of imipramine. These effects of CBD were probably mediated by activation of 5-HT(1A) receptors. British Journal of Pharmacology (2010) 159, 122-128; doi:10.1111/j.1476-5381.2009.00521.x; published online 4 December 2009FAPESPCNP

    Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation

    No full text
    corecore