6 research outputs found

    Ultrafast, CMOS compatible, integrated all optical switching

    Full text link
    El proyecto consistirá en implementar funcionalidades fotónicas avanzadas sobre silicio tales como conmutación ultra rápida o la realización de puertas lógicas todo ópticas. Para ello se emplearán efectos no lineales del silicio basados en el efecto Kerr, producido por el coeficiente no lineal de tercer orden chi(3) .Los dispositivos deberán funcionar al menos a 40Gbps para que sean competitivos con los dispositivos actuales de última generación. También deberán ser compatibles con tecnología CMOS, lo cual es crucial para que la fabricación se pueda realizar a gran escala a precios competitivos.Matres Abril, J. (2014). Ultrafast, CMOS compatible, integrated all optical switching [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/37984TESI

    Linear and nonlinear optical properties of carbon nanotube-coated single-mode optical fiber gratings

    Get PDF
    This paper was published in OPTICS LETTERS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.36.002104. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law[EN] Single-wall carbon nanotube deposition on the cladding of optical fibers has been carried out to fabricate an all-fiber nonlinear device. Two different nanotube deposition techniques were studied. The first consisted of repeatedly immersing the optical fiber into a nanotube supension, increasing the thickness of the coating in each step. The second deposition involved wrapping a thin film of nanotubes around the optical fiber. For both cases, interaction of transmitted light through the fiber core with the external coating was assisted by the cladding mode resonances of a tilted fiber Bragg grating. Ultrafast nonlinear effects of the nanotube-coated fiber were measured by means of a pump-probe pulses experiment. © 2011 Optical Society of America.This work was financially supported by the European Commission under the FP7 EURO-FOS Network of Excellence (ICT-2007-2-224402), the Ministerio de Educación y Ciencia SINADEC project (TEC2008-06333), and the Natural Sciences and Engineering Research Council of Canada (NSERC). The work of G. E. Villanueva was supported by the Ministerio de Educación y Ciencia Formación de Profesorado Universitario programs. The work of P. Pérez-Millán was supported by the Juan de la Cierva program, JCI-2009-05805.Villanueva Ibáñez, GE.; Jakubinek, M.; Simard, B.; Oton Nieto, CJ.; Matres Abril, J.; Shao, L.; Pérez Millán, P.... (2011). Linear and nonlinear optical properties of carbon nanotube-coated single-mode optical fiber gratings. Optics Letters. 36(11):2104-2106. https://doi.org/10.1364/OL.36.002104S210421063611Sakakibara, Y., Rozhin, A. G., Kataura, H., Achiba, Y., & Tokumoto, M. (2005). Carbon Nanotube-Poly(vinylalcohol) Nanocomposite Film Devices: Applications for Femtosecond Fiber Laser Mode Lockers and Optical Amplifier Noise Suppressors. Japanese Journal of Applied Physics, 44(4A), 1621-1625. doi:10.1143/jjap.44.1621Chow, K. K., Yamashita, S., & Song, Y. W. (2009). A widely tunable wavelength converter based on nonlinear polarization rotation in a carbon-nanotube-deposited D-shaped fiber. Optics Express, 17(9), 7664. doi:10.1364/oe.17.007664Set, S. Y., Yaguchi, H., Tanaka, Y., & Jablonski, M. (2004). Ultrafast Fiber Pulsed Lasers Incorporating Carbon Nanotubes. IEEE Journal of Selected Topics in Quantum Electronics, 10(1), 137-146. doi:10.1109/jstqe.2003.822912Chow, K. K., Tsuji, M., & Yamashita, S. (2010). Single-walled carbon-nanotube-deposited tapered fiber for four-wave mixing based wavelength conversion. Applied Physics Letters, 96(6), 061104. doi:10.1063/1.3304789Chow, K. K., & Yamashita, S. (2009). Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion. Optics Express, 17(18), 15608. doi:10.1364/oe.17.015608Choi, S. Y., Rotermund, F., Jung, H., Oh, K., & Yeom, D.-I. (2009). Femtosecond mode-locked fiber laser employing a hollow optical fiber filled with carbon nanotube dispersion as saturable absorber. Optics Express, 17(24), 21788. doi:10.1364/oe.17.021788Chan, C.-F., Chen, C., Jafari, A., Laronche, A., Thomson, D. J., & Albert, J. (2007). Optical fiber refractometer using narrowband cladding-mode resonance shifts. Applied Optics, 46(7), 1142. doi:10.1364/ao.46.001142Kingston, C. T., Jakubek, Z. J., Dénommée, S., & Simard, B. (2004). Efficient laser synthesis of single-walled carbon nanotubes through laser heating of the condensing vaporization plume. Carbon, 42(8-9), 1657-1664. doi:10.1016/j.carbon.2004.02.020Jakubinek, M. B., Johnson, M. B., White, M. A., Guan, J., & Simard, B. (2010). Novel Method to Produce Single-Walled Carbon Nanotube Films and Their Thermal and Electrical Properties. Journal of Nanoscience and Nanotechnology, 10(12), 8151-8157. doi:10.1166/jnn.2010.3014Vallaitis, T., Koos, C., Bonk, R., Freude, W., Laemmlin, M., Meuer, C., … Leuthold, J. (2008). Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Optics Express, 16(1), 170. doi:10.1364/oe.16.00017

    Accurate chromatic dispersion characterization of photonic integrated circuits

    Full text link
    An accurate technique to characterize chromatic dispersion and its slope versus wavelength is reported. The method is based on a heterodyne Mach-Zehnder interferometer, which is immune to thermal phase noise by using a counterpropagating reference beam. Chromatic dispersion profiles are obtained over a broad wavelength region even in short waveguides with considerable loss. Conventional strip silicon waveguides as well as slotted geometries are considered. Theoretical simulations are also presented for comparison, which show good agreement with the experimental results.Manuscript received March 23, 2012; revised May 5, 2012; accepted May 7, 2012. Date of current version May 22, 2012. This work was supported by the Spanish Ministry of Science and Innovation through contracts SINADEC (TEC2008-06333) and DEMOTEC (TEC2008-06360), from Generalitat Valenciana through PROMETEO-2010-087 RD Excellence Program (NANOMET) and Universitat Politecnica de Valencia through PAID-06-10 project 1914. Corresponding author: S. Mas (e-mail: [email protected]).Mas Gómez, SM.; Matres Abril, J.; Martí Sendra, J.; Oton Nieto, CJ. (2012). Accurate chromatic dispersion characterization of photonic integrated circuits. IEEE Photonics Journal. 4(3):825-831. https://doi.org/10.1109/JPHOT.2012.2199294S8258314

    Procesado todo-óptico en circuitos fotónicos sobre silicio

    Full text link
    [ES] Los cicuitos todo-ópticos pretenden emplear los efectos no lineales presentes en el silicio para desarrollar conmutadores ópticos o puertas lógicas fotónicas ultra-compactas. Estos circuitos al integrarse sobre chips de silicio permitirán su producción a gran escala y su integración con otros circuitos ópticos o electrónicos.[EN] All-optical silicon integrated circuits use nonlinear effects in silicon to perform switching and ultracompact logic gating. Their fabricantion over silicon wafers will allow mass production and integration with other optical or electrical circuits to develop more complex systems.Matres Abril, J. (2010). Procesado todo-óptico en circuitos fotónicos sobre silicio. http://hdl.handle.net/10251/30821.Archivo delegad

    High nonlinear figure-of-merit amorphous silicon waveguides

    Full text link
    The nonlinear response of amorphous silicon waveguides is reported and compared to silicon-on-insulator (SOI) samples. The real part of the nonlinear coefficient gamma is measured by four-wave-mixing and the imaginary part of gamma is characterized by measuring the nonlinear loss at different peak powers. The combination of both results yields a two-photon-absorption figure of merit of 4.9, which is more than 7 times higher than for the SOI samples. Time-resolved measurements and simulations confirm the measured nonlinear coefficient γ\gamma and show the absence of slow free-carrier effects versus ns free-carrier lifetimes in the SOI samples.We acknowledge financial support from the Spanish Ministry of Science and Innovation SINADEC (TEC2008-06333) and PROMETEO/2010/087 NANOFOTONICA projects and Universidad Politecnica de Valencia for PAID2011/1914 and J. Matres' doctoral grant.Matres Abril, J.; Ballesteros García, G.; Gautier, P.; Fedeli, J.; Martí Sendra, J.; Oton Nieto, CJ. (2013). High nonlinear figure-of-merit amorphous silicon waveguides. Optics Express. 21(4):3932-3940. https://doi.org/10.1364/OE.21.003932S39323940214Almeida, V. R., Barrios, C. A., Panepucci, R. R., & Lipson, M. (2004). All-optical control of light on a silicon chip. Nature, 431(7012), 1081-1084. doi:10.1038/nature02921Lee, B. G., Biberman, A., Turner-Foster, A. C., Foster, M. A., Lipson, M., Gaeta, A. L., & Bergman, K. (2009). Demonstration of Broadband Wavelength Conversion at 40 Gb/s in Silicon Waveguides. IEEE Photonics Technology Letters, 21(3), 182-184. doi:10.1109/lpt.2008.2009945Kuyken, B., Clemmen, S., Selvaraja, S. K., Bogaerts, W., Van Thourhout, D., Emplit, P., … Baets, R. (2011). On-chip parametric amplification with 265 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides. Optics Letters, 36(4), 552. doi:10.1364/ol.36.000552Mizrahi, V., Saifi, M. A., Andrejco, M. J., DeLong, K. W., & Stegeman, G. I. (1989). Two-photon absorption as a limitation to all-optical switching. Optics Letters, 14(20), 1140. doi:10.1364/ol.14.001140Narayanan, K., & Preble, S. F. (2010). Optical nonlinearities in hydrogenated-amorphous silicon waveguides. Optics Express, 18(9), 8998. doi:10.1364/oe.18.008998O’Leary, S. K., Johnson, S. R., & Lim, P. K. (1997). The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis. Journal of Applied Physics, 82(7), 3334-3340. doi:10.1063/1.365643Kuyken, B., Ji, H., Clemmen, S., Selvaraja, S. K., Hu, H., Pu, M., … Baets, R. (2011). Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides. Optics Express, 19(26), B146. doi:10.1364/oe.19.00b146Vallaitis, T., Bogatscher, S., Alloatti, L., Dumon, P., Baets, R., Scimeca, M. L., … Leuthold, J. (2009). Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries. Optics Express, 17(20), 17357. doi:10.1364/oe.17.017357Tsu-Te Kung, Ching-Ten Chang, Jeng-Cherng Dung, & Sien Chi. (2003). Four-wave mixing between pump and signal in a distributed raman amplifier. Journal of Lightwave Technology, 21(5), 1164-1170. doi:10.1109/jlt.2003.810929Wu, M., & Way, W. I. (2004). Fiber Nonlinearity Limitations in Ultra-Dense WDM Systems. Journal of Lightwave Technology, 22(6), 1483-1498. doi:10.1109/jlt.2004.829222Mas, S., Matres, J., Marti, J., & Oton, C. J. (2012). Accurate Chromatic Dispersion Characterization of Photonic Integrated Circuits. IEEE Photonics Journal, 4(3), 825-831. doi:10.1109/jphot.2012.2199294Vallaitis, T., Koos, C., Bonk, R., Freude, W., Laemmlin, M., Meuer, C., … Leuthold, J. (2008). Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Optics Express, 16(1), 170. doi:10.1364/oe.16.000170Lin, Q., Painter, O. J., & Agrawal, G. P. (2007). Nonlinear optical phenomena in silicon waveguides: modeling and applications. Optics Express, 15(25), 16604. doi:10.1364/oe.15.016604Matres, J., Lacava, C., Ballesteros, G. C., Minzioni, P., Cristiani, I., Fédéli, J. M., … Oton, C. J. (2012). Low TPA and free-carrier effects in silicon nanocrystal-based horizontal slot waveguides. Optics Express, 20(21), 23838. doi:10.1364/oe.20.023838Koos, C., Jacome, L., Poulton, C., Leuthold, J., & Freude, W. (2007). Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Optics Express, 15(10), 5976. doi:10.1364/oe.15.005976Rukhlenko, I. D., Premaratne, M., & Agrawal, G. P. (2012). Effective mode area and its optimization in silicon-nanocrystal waveguides. Optics Letters, 37(12), 2295. doi:10.1364/ol.37.002295Koos, C., Vorreau, P., Vallaitis, T., Dumon, P., Bogaerts, W., Baets, R., … Leuthold, J. (2009). All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photonics, 3(4), 216-219. doi:10.1038/nphoton.2009.2

    Optical phase characterization of photonic integrated devices

    Full text link
    We propose a relatively simple experimental setup, capable of accurately characterizing the optical phase response of an integrated photonic circuit. The setup is based on a phase-noise reduction scheme using an external heterodyne Mach Zehnder interferometer. In particular, we characterize the phase response of different silicon photonic components: under- and over-coupled ring resonators, and a slow-light corrugated waveguide.This work was supported by the Spanish Ministry of Science and Innovation through SINADEC (TEC2008-06333), LEOMIS (TEC2012-38540), and PROMETEO/2010/087 NANOFOTONICA Contracts, Universidad Politecnica de Valencia for PAID2011/1914 and Joaquin Matres FPI Doctoral Grant, and Transatlantic partnership for Excellence in Engineering funded by EU Commission under the Erasmus Mundus Action 2 program.Matres Abril, J.; Ballesteros García, G.; Mas Gómez, SM.; Brimont, ACJ.; Sanchis Kilders, P.; Martí Sendra, J.; Oton Nieto, CJ. (2014). Optical phase characterization of photonic integrated devices. IEEE Journal of Selected Topics in Quantum Electronics. 20(4). https://doi.org/10.1109/JSTQE.2013.2292511S20
    corecore