44 research outputs found

    Synthesis of Polythiophene–Fullerene Hybrid Additives as Potential Compatibilizers of BHJ Active Layers

    No full text
    Perfluorophenyl functionalities have been introduced as side chain substituents onto regioregular poly(3-hexyl thiophene) (rr-P3HT), under various percentages. These functional groups were then converted to azides which were used to create polymeric hybrid materials with fullerene species, either C60 or C70. The P3HT–fullerene hybrids thus formed were thereafter evaluated as potential compatibilizers of BHJ active layers comprising P3HT and fullerene based acceptors. Therefore, a systematic investigation of the optical and morphological properties of the purified polymer–fullerene hybrid materials was performed, via different complementary techniques. Additionally, P3HT:PC70BM blends containing various percentages of the herein synthesized hybrid material comprising rr-P3HT and C70 were investigated via Transmission Electron Microscopy (TEM) in an effort to understand the effect of the hybrids as additives on the morphology and nanophase separation of this typically used active layer blend for OPVs

    Synthesis and Optoelectronic Characterization of Perylene Diimide-Quinoline Based Small Molecules

    No full text
    Perylene diimide (PDI) is one of the most studied functional dyes due to their structural versatility and fine tuning of the materials properties. Core substituted PDIs are prominent n-type semiconductor materials that could be used as non-fullerene acceptors in organic photovoltaics. Herein, we develop versatile organic building blocks based on PDI by decorating the PDI core with quinoline groups. Styryl and hydroxy phenyl mono and difunctionalized molecules were prepared using mono-nitro and dibromo bay substituted PDIs by Suzuki coupling with the respective boronic acid derivatives. A novel methodology using nitro-PDI under Suzuki coupling conditions as an electrophile partner was successfully tested. Furthermore, the PDI derivatives were used for the synthesis of soluble, electron accepting small molecules combining PDI with weak electron withdrawing quinoline derivatives. The new molecules presented wide absorbance in the visible spectrum from 450 to almost 700 nm while their LUMO levels and their energy levels are in the range of −3.8 to −4.2 eV

    Preparation of Porous Polymeric Membranes Based on a Pyridine Containing Aromatic Polyether Sulfone

    No full text
    Polymeric membranes, based on a polysulfone-type aromatic polyether matrix, were successfully developed via the non-solvent induced phase separation (NIPS) method. The polyethersulfone type polymer poly[2-(4-(diphenylsulfonyl)-phenoxy)-6-(4-phenoxy) pyridine] (PDSPP) was used as the membrane matrix, and mixed with its sulfonated derivative (SPDSPP) and a polymeric porogen. The SPDPPP was added to impart hydrophilicity, while at the same time maintaining the interactions with the non-sulfonated aromatic polyether forming the membrane matrix. Different techniques were used for the membranes’ properties characterization. The results revealed that the use of the non-sulfonated and sulfonated polymers of the same polymeric backbone, at certain compositions, can lead to membranes with controllable porosity and hydrophilicity

    Copolymers and Hybrids Based on Carbazole Derivatives and Their Nanomorphology Investigation

    No full text
    Oligomers of the low-band-gap PCDTBT polymer, based on either 3,6 or 2,7 carbazole units, were modified with vinyl ω-chain end functionalities. The vinyl-functionalized oligomers were used as comonomers in free radical polymerizations with quinoline-based monomers such as 6-vinylphenyl-(2-pyridinyl)-4-phenyl-quinoline (vinyl-QPy), and 6-vinylphenyl-(2-perfluorophenyl)-4-phenyl quinoline (vinyl-5FQ). The co-polymeric materials bearing the vinyl-QPy moiety were developed as potential compatibilizers in polymer electron donor⁻fullerene acceptor blends for non-covalent interactions with the fullerene part. The co-polymeric materials bearing the vinyl-5FQ moiety were developed for the covalent attachment of carbon nanostructures; specifically, PC61BM. Both copolymers and hybrids, after thorough purification, were characterized in terms of their spectroscopic and optical properties as well as their ability to form nanophased separated films as such, or as additives at various percentages into PCDTBT: PC71BM blends

    Polymeric Antimicrobial Coatings Based on Quaternary Ammonium Compounds

    No full text
    Biocidal coatings that are based on quaternized ammonium copolymers were developed after blending and crosslinking and studied as a function of the ratio of reactive groups and the type of biocidal groups, after curing at room temperature or 120 °C. For this purpose, two series of copolymers with complementary reactive groups, poly(4-vinylbenzyl chloride-co-acrylic acid), P(VBC-co-AAx), and poly(sodium 4-styrenesulfonate-co-glycidyl methacrylate), P(SSNa-co-GMAx), were synthesized via free radical copolymerization and further modified resulting in covalently bound (4-vinylbenzyl dimethylhexadecylammonium chloride, VBCHAM) and electrostatically attached (hexadecyltrimethylammonium 4-styrene sulfonate, SSAmC16) units. The crosslinking reaction between the carboxylic group of acrylic acid (AA) and the epoxide group of glycidyl methacrylate (GMA) of these copolymers led to the stabilization of the coatings through reactive blending. The so developed coatings were cured at room temperature and 120 °C, and then immersed in ultra-pure water and aqueous NaCl solutions at various concentrations for a time period up to three months. Visual inspection of the integrity of the materials coated onto glass slides, gravimetry, scanning electron microscopy (SEM) characterization, as well as the determination of total organic carbon (TOC) and total nitrogen (TN) of the solutions, were used to investigate the parameters affecting the release of the materials from the coatings based on these systems. The results revealed that curing temperature, complementary reactive groups’ content, and type of antimicrobial species control the release levels and the nature of releasable species of these environmentally-friendly antimicrobial coatings
    corecore