5 research outputs found

    IL-33 Gene Polymorphisms as Potential Biomarkers of Disease Susceptibility and Response to TNF Inhibitors in Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis Patients

    Get PDF
    ObjectiveRheumatoid arthritis (RA), ankylosing spondylitis (AS), and psoriatic arthritis (PsA) belong to inflammatory rheumatic diseases, the group of conditions of unknown etiology. However, a strong genetic component in their pathogenesis has been well established. A dysregulation of cytokine networks plays an important role in the development of inflammatory arthritis. Interleukin 33 (IL-33) is a recently identified member of the IL-1 family. To date, the significance of IL-33 in inflammatory arthritis has been poorly studied. This research aimed to investigate the potential of IL-33 gene polymorphisms to serve as biomarkers for disease susceptibility and TNF inhibitor response in RA, AS, and PsA patients.Materials and MethodsIn total, 735 patients diagnosed with RA, AS, and PsA and 229 healthy individuals were enrolled in the study. Genotyping for three single nucleotide polymorphisms (SNPs) within the IL-33 gene, namely, rs16924159 (A/G), rs10975519 (T/C), and rs7044343 (C/T), was performed using polymerase chain reaction amplification employing LightSNiP assays.ResultsIn the present study, the IL-33 rs10975519 CC genotype was associated with a decreased risk of developing RA in females, while the IL-33 rs16924159 polymorphism was associated with the efficacy of anti-TNF therapy and clinical parameters for RA and AS patients. The IL-33 rs16924159 AA genotype correlated with higher disease activity and worse clinical outcomes in RA patients treated with TNF inhibitors, and AS patients carrying the IL-33 rs16924159 AA genotype had higher disease activity and a worse response to anti-TNF therapy. That indicates a deleterious role of the IL-33 rs16924159 AA genotype in the context of RA, as well as AS.ConclusionsThe obtained results suggest that IL-33 gene polymorphisms might be potential candidate biomarkers of disease susceptibility and anti-TNF treatment response in patients with inflammatory rheumatic diseases

    Searching for New Genetic Biomarkers of Axial Spondyloarthritis

    No full text
    Background: Axial spondyloarthritis (axSpA) is a chronic inflammatory condition of the spine. In addition to musculoskeletal symptoms, there are also extra-articular manifestations. The aim of this study was to search for new biomarkers associated with the clinical presentation and treatment response in axSpA patients. Methods: In this study, 106 axSpA patients and 110 healthy controls were enrolled. Six single-nucleotide polymorphisms (SNPs) were selected for genotyping: ERAP1 rs2287987, ERAP2 rs2549782, TNF rs1800629, TNFRSF1A rs767455, TNFRSF1B rs1061622, and FCGR2A rs1801274. Participants were examined at baseline and after 12 and 24 weeks of anti-TNF therapy. Results: SNPs associated with high axSpA initial activity were TNFRSF1A rs767455 and TNFRSF1B rs1061622 (p < 0.008). The ERAP1 rs2287987 AA genotype was more frequently observed in patients with enthesitis (AA vs. G+, p = 0.049), while the TNFRSF1B rs1061622 GG genotype was more common in participants with uveitis (GG vs. TT, p = 0.042). Potential in predicting anti-TNF treatment response was demonstrated by ERAP1 rs2287987, ERAP2 rs2549782, TNFRSF1B rs1061622, and FCGR2A rs1801274. Conclusions: SNPs can be used to identify patients at risk of severe disease to initiate treatment earlier. Genetic testing will allow clinicians to choose the right drug for the patient

    VDR Polymorphic Variants Are Related to Improvements in CRP and Disease Activity in Patients with Axial Spondyloarthritis That Undergo Anti-TNF Treatment

    No full text
    Vitamin D deficiency is related with susceptibility or progression of various autoimmune diseases. The aim of the study was to assess potential relations between single nucleotide polymorphisms (SNPs) in the vitamin D receptor-coding gene (VDR): rs1544410 (BsmI), rs2228570 (FokI), rs731236 (TaqI), rs7975232 (ApaI), and disease activity in patients with axial spondyloarthritis (axSpA) undergoing anti-TNF therapy. The VDR rs731236 CT genotype was statistically more common among female patients (p = 0.027). An improvement of CRP equal to or higher than 50% after 3 months of anti-TNF therapy was observed for rs2228570 T allele (p = 0.002). After 6 months, CRP improvement equal to or higher than 75% was related to presence of the rs1544410 AA genotype (p = 0.027) and the rs731236 CC homozygotes (p = 0.047). Baseline BASDAI values were lower in individuals with the rs2228570 TT genotype (p = 0.036) and rs7975232 C allele (p = 0.029). After 6 months of treatment, lower BASDAI values were observed in AC heterozygotes (p = 0.005). The same AC genotype was more frequently detected in patients with remission (BASDAI ≤ 2) (p = 0.001) and in those achieving BASDAI improvement equal to or higher than 75% (p = 0.006). In conclusion, VDR SNPs were found to relate to CRP and BASDAI values at different time points of anti-TNF therapy

    Disease Differentiation and Monitoring of Anti-TNF Treatment in Rheumatoid Arthritis and Spondyloarthropathies

    No full text
    Rheumatoid arthritis (RA), ankylosing spondylitis (AS), and psoriatic arthritis (PsA) are comprehensive immunological disorders. The treatment of these disorders is limited to ameliorating the symptoms and improving the quality of life of patients. In this study, serum samples from RA, AS, and PsA patients were analyzed with metabolomic tools employing the 1H NMR method in combination with univariate and multivariate analyses. The results obtained in this study showed that the changes in metabolites were the highest for AS > RA > PsA. The study demonstrated that the time until remission or until low disease activity is achieved is shortest (approximately three months) for AS, longer for RA and longest for PsA. The statistically common metabolite that was found to be negatively correlated with the healing processes of these disorders is ethanol, which may indicate the involvement of the gut microflora and/or the breakdown of malondialdehyde as a cell membrane lipid peroxide product
    corecore