5 research outputs found

    The Analysis of Inflammation-Related Proteins in a Cargo of Exosomes Derived from the Serum of Uveal Melanoma Patients Reveals Potential Biomarkers of Disease Progression

    No full text
    Background: Uveal melanoma (UM) is the most common intraocular tumour in adults with a poor prognosis and extremely high mortality rate due to the development of metastatic disease. However, despite relatively good knowledge about the histological and genetic risk factors for metastasis development, there is no specific biomarker that would allow early detection of UM progression. Recently, exosomes and their molecular cargo have been widely studied in the search for potential biomarkers in several cancers. The purpose of this study was to analyze the inflammation-related protein cargo of exosomes derived from the serum of primary and metastatic UM patients and healthy donors. Methods: The exosomes were isolated from the serum of primary and metastatic UM patients and healthy donors. Using multiplex immunoassay technology, we analyzed the concentration of 37 inflammation-related proteins in obtained exosomes. Results: The analysis of protein cargo showed several molecules related to inflammation, such as interferon-gamma, interleukin 2, 22 and 12(p40), Pentraxin-3, TNFSF13B and TNFSF8 which were significantly enriched in metastatic UM exosomes. We showed a significant correlation between the disease stage and the concentration of these inflammation-related proteins from exosomal cargo. Conclusions: Based on the obtained results, we propose the panel of exosomal proteins for early detection of uveal melanoma progression into metastatic disease

    Disruption of RING and PHD Domains of TRIM28 Evokes Differentiation in Human iPSCs

    No full text
    TRIM28, a multi-domain protein, is crucial in the development of mouse embryos and the maintenance of embryonic stem cells’ (ESC) self-renewal potential. As the epigenetic factor modulating chromatin structure, TRIM28 regulates the expression of numerous genes and is associated with progression and poor prognosis in many types of cancer. Because of many similarities between highly dedifferentiated cancer cells and normal pluripotent stem cells, we applied human induced pluripotent stem cells (hiPSC) as a model for stemness studies. For the first time in hiPSC, we analyzed the function of individual TRIM28 domains. Here we demonstrate the essential role of a really interesting new gene (RING) domain and plant homeodomain (PHD) in regulating pluripotency maintenance and self-renewal capacity of hiPSC. Our data indicate that mutation within the RING or PHD domain leads to the loss of stem cell phenotypes and downregulation of the FGF signaling. Moreover, impairment of RING or PHD domain results in decreased proliferation and impedes embryoid body formation. In opposition to previous data indicating the impact of phosphorylation on TRIM28 function, our data suggest that TRIM28 phosphorylation does not significantly affect the pluripotency and self-renewal maintenance of hiPSC. Of note, iPSC with disrupted RING and PHD functions display downregulation of genes associated with tumor metastasis, which are considered important targets in cancer treatment. Our data suggest the potential use of RING and PHD domains of TRIM28 as targets in cancer therapy

    The Composition of Surgical Wound Fluids from Breast Cancer Patients is Affected by Intraoperative Radiotherapy Treatment and Depends on the Molecular Subtype of Breast Cancer

    No full text
    Invasive oncological procedures affect the remaining tumor cells by increasing their survival, proliferation, and migration through the induction of wound healing response. The phenomena of local relapse after breast-conserving surgery (BCS) has resulted in a series of research and clinical trials with the aim of assessing whether localized intraoperative radiotherapy (IORT), may be beneficial in inhibiting local recurrences. Therefore, it is essential to assess the impact of intraoperative radiotherapy in modulating the immunological response and wound healing process. Thus, we decided to perform a quantitative analysis of the composition of surgical wound fluids (SWF) in two groups of breast cancer (BC) patients: those treated with BCS followed by IORT, and those who underwent BCS alone. We found that several cytokines, which are believed to have anti-tumor properties, were highly expressed in the luminal A breast cancer subtype in the IORT treatment group. Interestingly, we also found significant differences between IORT patients with tumors of different molecular subtypes. Based on these findings, we hypothesized that IORT treatment might be beneficial in changing the tumor bed microenvironment, making it less favorable for tumor recurrence due to decreased concentration of tumor-facilitating cytokines, especially in the luminal A subtype of BC

    The Potential Role of Selected miRNA in Uveal Melanoma Primary Tumors as Early Biomarkers of Disease Progression

    No full text
    Uveal melanoma (UM) is the most common primary tumor of the eye diagnosed in adults, associated with a high risk of metastasis and thereby, poor prognosis. Among known risk factors for the development of metastatic disease is the loss of BAP1 expression and chromosome 3 monosomy in the primary tumor. However, the expression levels of specific micro RNAs (miRNA) in tumor tissue may also serve as a valuable marker for determining the risk of metastatic disease in patients with primary uveal melanoma. In our study, we analyzed the miRNA expression data of cases selected from The Cancer Genome Atlas study on uveal melanoma, and determined a panel of 15 miRNAs differentially expressed between patients with primary and metastatic disease. Next, 6 miRNAs were validated on a group of 46 tumor samples from primary and metastatic patients. We have shown, that expression of hsa-miR-592, hsa-miR-346, and hsa-miR-1247 was significantly increased, while hsa-miR-506 and hsa-miR-513c were decreased in the tumors of patients with metastatic disease. Hsa-miR-196b expression did not differ between the two subgroups, however, we showed significant correlation with BAP1 expression. Moreover, hsa-miR-592 also showed correlation with monosomy 3 tumors. Gene ontology analysis revealed involvement of those miRNAs with cellular processes mediating the metastatic process. Our results showed that miRNAs play an important role in the deregulation of several oncogenic pathways in UM and can, thereby, promote metastatic spread to distant organs. Moreover, differentially expressed miRNAs may be used as an interesting biomarker for the assessment of metastatic risk in uveal melanoma patients
    corecore