241 research outputs found
Beyond biophobia: positive appraisal of bats among German residents during the COVID-19 pandemic - with consequences for conservation intentions
Bats are often considered to be objects of biophobia, i.e., the tendency to respond with a negative emotion, such as fear or disgust, especially during the COVID-19 pandemic. However, existing studies have rarely compared both positive and negative emotions towards bats, leading to a potential negativity bias. This is crucial given the importance of emotions to bat-related human behaviours, such as in bat conservation-related actions. Via two online surveys conducted among German residents, we aimed to (i) assess positive and negative emotions towards bats, (ii) examine emotional shifts during the pandemic and (iii) explore how emotions, along with socio-demographics, predict the intent to perform bat-conservation actions. The first survey was undertaken ten months after the official declaration of the COVID-19 pandemic (December 2020 - January 2021), when bats gained societal attention due to speculation about the origin of the SARS-CoV-2 virus, and the second one ran twelve months later (January 2022). Overall, respondents held higher positive emotions than negative ones towards bats in both surveys, with no significant emotional shift observed. Positive emotions positively correlated with intentions to perform bat-conservation actions, while negative emotions showed no such relationship. Although our findings might be context-specific to populations in Germany or Europe, given European-Union legislation protecting bats and their habitats, they highlight the nuanced and complicated emotions that can be associated with certain species. Understanding these emotions can guide targeted conservation strategies and public outreach. Our results caution against overly generalising discussions of biophobia in conservation
CCCTC-binding factor recruitment to the early region of the human papillomavirus 18 genome regulates viral oncogene expression.
UNLABELLED: Host cell differentiation-dependent regulation of human papillomavirus (HPV) gene expression is required for productive infection. The host cell CCCTC-binding factor (CTCF) functions in genome-wide chromatin organization and gene regulation. We have identified a conserved CTCF binding site in the E2 open reading frame of high-risk HPV types. Using organotypic raft cultures of primary human keratinocytes containing high-risk HPV18 genomes, we show that CTCF recruitment to this conserved site regulates viral gene expression in differentiating epithelia. Mutation of the CTCF binding site increases the expression of the viral oncoproteins E6 and E7 and promotes host cell proliferation. Loss of CTCF binding results in a reduction of a specific alternatively spliced transcript expressed from the early gene region concomitant with an increase in the abundance of unspliced early transcripts. We conclude that high-risk HPV types have evolved to recruit CTCF to the early gene region to control the balance and complexity of splicing events that regulate viral oncoprotein expression. IMPORTANCE: The establishment and maintenance of HPV infection in undifferentiated basal cells of the squamous epithelia requires the activation of a subset of viral genes, termed early genes. The differentiation of infected cells initiates the expression of the late viral transcripts, allowing completion of the virus life cycle. This tightly controlled balance of differentiation-dependent viral gene expression allows the virus to stimulate cellular proliferation to support viral genome replication with minimal activation of the host immune response, promoting virus productivity. Alternative splicing of viral mRNAs further increases the complexity of viral gene expression. In this study, we show that the essential host cell protein CTCF, which functions in genome-wide chromatin organization and gene regulation, is recruited to the HPV genome and plays an essential role in the regulation of early viral gene expression and transcript processing. These data highlight a novel virus-host interaction important for HPV pathogenicity.CP was supported by a PhD studentship funded by the University of St Andrews, School of Medicine. IP is supported by a Cancer Research UK (CRUK) PhD Studentship awarded to JLP and SR. IG and NC are supported by a CRUK Programme Award (13080) to NC. JLP is supported by a Royal Society University Research Fellowship (UF110010).This is the final version of the article. It first appeared from American Society for Microbiology via http://dx.doi.org/10.1128/JVI.00097-1
STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle.
Human papillomaviruses (HPV) activate a number of host factors to control their differentiation-dependent life cycles. The transcription factor signal transducer and activator of transcription (STAT)-3 is important for cell cycle progression and cell survival in response to cytokines and growth factors. STAT3 requires phosphorylation on Ser727, in addition to phosphorylation on Tyr705 to be transcriptionally active. In this study, we show that STAT3 is essential for the HPV life cycle in undifferentiated and differentiated keratinocytes. Primary human keratinocytes containing high-risk HPV18 genomes display enhanced STAT3 phosphorylation compared to normal keratinocytes. Expression of the E6 oncoprotein is sufficient to induce the dual phosphorylation of STAT3 at Ser727 and Tyr705 by a mechanism requiring Janus kinases and members of the MAPK family. E6-mediated activation of STAT3 induces the transcription of STAT3 responsive genes including cyclin D1 and Bcl-xL. Silencing of STAT3 protein expression by siRNA or inhibition of STAT3 activation by small molecule inhibitors, or by expression of dominant negative STAT3 phosphorylation site mutants, results in blockade of cell cycle progression. Loss of active STAT3 impairs HPV gene expression and prevents episome maintenance in undifferentiated keratinocytes and upon differentiation, lack of active STAT3 abolishes virus genome amplification and late gene expression. Organotypic raft cultures of HPV18 containing keratinocytes expressing a phosphorylation site STAT3 mutant display a profound reduction in suprabasal hyperplasia, which correlates with a loss of cyclin B1 expression and increased differentiation. Finally, increased STAT3 expression and phosphorylation is observed in HPV positive cervical disease biopsies compared to control samples, highlighting a role for STAT3 activation in cervical carcinogenesis. In summary, our data provides evidence of a critical role for STAT3 in the HPV18 life cycle
Disruption of CTCF-YY1-dependent looping of the human papillomavirus genome activates differentiation-induced viral oncogene transcription.
The complex life cycle of oncogenic human papillomavirus (HPV) initiates in undifferentiated basal epithelial keratinocytes where expression of the E6 and E7 oncogenes is restricted. Upon epithelial differentiation, E6/E7 transcription is increased through unknown mechanisms to drive cellular proliferation required to support virus replication. We report that the chromatin-organising CCCTC-binding factor (CTCF) promotes the formation of a chromatin loop in the HPV genome that epigenetically represses viral enhancer activity controlling E6/E7 expression. CTCF-dependent looping is dependent on the expression of the CTCF-associated Yin Yang 1 (YY1) transcription factor and polycomb repressor complex (PRC) recruitment, resulting in trimethylation of histone H3 at lysine 27. We show that viral oncogene up-regulation during cellular differentiation results from YY1 down-regulation, disruption of viral genome looping, and a loss of epigenetic repression of viral enhancer activity. Our data therefore reveal a key role for CTCF-YY1-dependent looping in the HPV life cycle and identify a regulatory mechanism that could be disrupted in HPV carcinogenesis
Policing unacceptable protest in England and Wales: A case study of the policing of anti-fracking protests
In recent years public order policing policy in England and Wales has undergone significant changes. A ‘human rights compliant’ model of protest policing has been developed since 2009 and this article makes a contribution to the body of academic work considering the impact of these changes on operational policing. Drawing upon a longitudinal case study of the policing of protests against ‘fracking’ in Salford, Greater Manchester, in 2013-2014, the article contrasts post-2009 policy and academic discourses on protest policing with the experiences of anti-fracking protesters. To develop this assessment, the article also draws attention to previously unexplored definitions of acceptable and unacceptable protest set out by police in more recent policy, and considers the extent to which these definitions are reflected in the police response to anti-fracking protest. The article suggests that a police commitment to a human rights approach to protest facilitation is, at least in the case of anti-fracking protest, contingent on the focus and form of political activism
The Astropy Problem
The Astropy Project (http://astropy.org) is, in its own words, "a community
effort to develop a single core package for Astronomy in Python and foster
interoperability between Python astronomy packages." For five years this
project has been managed, written, and operated as a grassroots,
self-organized, almost entirely volunteer effort while the software is used by
the majority of the astronomical community. Despite this, the project has
always been and remains to this day effectively unfunded. Further, contributors
receive little or no formal recognition for creating and supporting what is now
critical software. This paper explores the problem in detail, outlines possible
solutions to correct this, and presents a few suggestions on how to address the
sustainability of general purpose astronomical software
Performance of HRP-2 based rapid diagnostic test for malaria and its variation with age in an area of intense malaria transmission in southern tanzania
BACKGROUND: The use of malaria rapid diagnostic tests (RDTs) has been widely advocated to improve Plasmodium falciparum diagnosis, especially in settings where quality microscopy is not available. RDTs based on the detection of histidine-rich protein 2 (HRP-2) can remain positive for several weeks after an infection is cured, due to the persistence of HRP-2 antigens. As a result, test specificity may vary between age groups with different prevalence of P. falciparum infection. METHODS: A community-based cross-sectional survey, carried out in southern Tanzania in July and August 2004, evaluated the performance of the Paracheck Pf in comparison with microscopy (number of P. falciparum parasites/200 leucocytes). A sample of 598 individuals living in an area of intense malaria transmission had demographic data collected before an RDT was performed. HRP-2 test sensitivity, specificity, positive and negative predictive values were calculated and compared between distinct age groups, using microscopy as "gold standard". RESULTS: The overall malaria prevalence was 34.3% according to microscopy and 57.2% according to the HRP-2 test. The HRP-2 test had a sensitivity of 96.1%, a specificity of 63.1%, a positive predictive value of 57.6% and a negative predictive value of 96.9%. The test sensitivity was higher (ranging from 98% to 100%) amongst people less than 25 years of age, but decreased to 81.3% in older adults. The HRP-2 test specificity varied between age groups, ranging from 25% among children of five to nine years of age, to 73% among adults aged 25 or more. The test positive predictive value increased with malaria prevalence, while the negative predictive value was consistently high across age groups. CONCLUSIONS: These results suggest that the performance of HRP-2 tests in areas of intense malaria transmission varies by age and the prevalence of P. falciparum infection. The particularly low specificity among children will lead to the over-estimation of malaria infection prevalence in this group
External influences and priority-setting for anti-cancer agents: a case study of media coverage in adjuvant trastuzumab for breast cancer
<p>Abstract</p> <p>Background</p> <p>Setting priorities for the funding of new anti-cancer agents is becoming increasingly complex. The funding of adjuvant trastuzumab for breast cancer has brought this dilemma to the fore. In this paper we review external factors that may influence decision-making bodies and present a case study of media response in Ontario, Canada to adjuvant trastuzumab for breast cancer.</p> <p>Methods</p> <p>A comprehensive search of the databases of Canadian national and local newspapers and television was performed. Articles pertaining to trastuzumab in adjuvant breast cancer as well as 17 other anti-cancer drugs and indications were retrieved. The search period was from the date when individual trial results were announced to the date funding was made available in Ontario.</p> <p>Results</p> <p>During the 2.6 months between the release of the trastuzumab results to funding approval in Ontario, we identified 51 episodes of media coverage. For the 17 other drugs/indications (7 breast and 10 non-breast), the median time to funding approval was 31 months (range 14–46). Other recent major advances in oncology such as adjuvant vinorelbine/cisplatin for resected NSCLC and docetaxel for advanced prostate cancer received considerably less media attention (17 media reports for each) than trastuzumab. The median number of media reports for breast cancer drugs was 4.5 compared to 2.5 for non-breast cancer drugs (p = 0.56).</p> <p>Conclusion</p> <p>Priority-setting for novel anti-cancer agents is a complex process that tries to ensure fair use of constrained resources to fund therapies with the best evidence of clinical benefit. However, this process is subject to external factors including the influence of media, patient advocates, politicians, and industry. The data in this case study serve to illustrate the significant involvement one (or all) of these external factors may play in the debate over priority-setting.</p
Urbanisation generates multiple trait syndromes for terrestrial animal taxa worldwide
Cities can host significant biological diversity. Yet, urbanisation leads to the loss of habitats, species, and functional groups. Understanding how multiple taxa respond to urbanisation globally is essential to promote and conserve biodiversity in cities. Using a dataset encompassing six terrestrial faunal taxa (amphibians, bats, bees, birds, carabid beetles and reptiles) across 379 cities on 6 continents, we show that urbanisation produces taxon-specific changes in trait composition, with traits related to reproductive strategy showing the strongest response. Our findings suggest that urbanisation results in four trait syndromes (mobile generalists, site specialists, central place foragers, and mobile specialists), with resources associated with reproduction and diet likely driving patterns in traits associated with mobility and body size. Functional diversity measures showed varied responses, leading to shifts in trait space likely driven by critical resource distribution and abundance, and taxon-specific trait syndromes. Maximising opportunities to support taxa with different urban trait syndromes should be pivotal in conservation and management programmes within and among cities. This will reduce the likelihood of biotic homogenisation and helps ensure that urban environments have the capacity to respond to future challenges. These actions are critical to reframe the role of cities in global biodiversity loss.info:eu-repo/semantics/publishedVersio
- …