4 research outputs found

    Identification of Residual Stresses in a Surface Layer of Ti6AL4V and Inconel 718 after Process of Peripheral Milling

    Get PDF
    Titanium based alloy – Ti6Al4V and nickel based alloy – Inconel 718 belong to the group of difficult-to-cut materials. Thanks to their unique properties they can be used in constructions that need to withstand the high reliability requirements which are required inter alia in the aircraft industry. The physical properties of cutting layer, including residual stresses, play an important role during exploitation of products made out of difficult-to-cut materials. In the article, the method of residual stresses determination is described and the exemplary results of carried out studies are provided. Described method is based on the measurement of the defects in the crystal lattice. The carried out studies show that the state of residual stresses, in a subsurface layer, can be formed by the selection of machining conditions

    Maintenance Supervision of the Dies Condition and Technological Quality of Forged Products in Industrial Conditions

    No full text
    Wear of the working surfaces of the forging dies in the process of manufacturing products with the die forging technique leads to deterioration of their operational properties as well as their technological quality. A characteristic feature of production in small and medium-sized enterprises is the high variability of the product range and short production series, which can be repeated in the case of re-orders by customers. In this type of production conditions, a technological criterion in form of – a change in the characteristic and selected dimension of forging is usually used to assess the quality of products. An important problem is, whether by taking up another order for a series of the same type of product, it will be possible to implement it with the existing die, or should a new die be made? As a result of the research carried out in the company implementing this type of contract, a procedure was proposed for forecasting the abrasive wear of die working surfaces on the basis of a technological criterion, easy to determine in the conditions of small and medium-sized enterprises. The paper presents the results of the wear assessment of a die made out of hot-work tool steel X37CrMoV5-1 (WCL) and dies made of 42CrMo4 alloy structural steel with hardfacing working surfaces by F-818 wire. To determine and forecast the process of die wear, a mathematical model in the form of neural networks was used. Their task was to forecast the ratio of the increment in introduced wear intensity indicator to the number of forgings made during the process. Taking into accoun

    Technological Possibilities of the Carbide Tools Application for Precision Machining of WCLV Hardened Steel

    No full text
    Precision milling of free (curved) surfaces with the use of monolithic milling cutters is used in the production of hardened steel elements such as dies, molds, or press tools. Precision milling processes are carried out with the following milling parameters: axial cutting depth ap <0.3 mm, cutting width ae <0.5 mm and the required machining accuracy below 40 µm. The quality of the obtained surfaces in injection molds is directly transferred to the quality of the molded part. One of the key criteria for the manufactured elements is the surface quality which is mainly assessed by the roughness parameters. Due to the use of carbide tools high reliability and quality of machining is obtained which allows to eliminate the grinding process. In precision milling processes, due to the very small radius of the cutting edge and the cross-sections of the cutting layers, the conditions that must be met for the decohesion process to occur are fundamentally diff erent from macro-scale. The minimum value range of ap and ae parameters was determined in a carried-out experiment, which allows for stable and repeatable machining. The tests were carried out with double-edge shank cutters with a diameter of 6 mm on a workpiece made out of WCVL hardened steel 45–47 HRC. Recommended machining conditions have been defi ned to ensure the required technological quality of the surface layer. The research was fi nanced under the research project POIR.01.01.01-000890/17 co-fi nanced by the European Union from the European Regional Development Fund

    Assessment of the impact of shaped nozzles installed inside the pipeline on the energy efficiency of compressed gas systems

    No full text
    Abstract Pressure pulsations and vibrations generated in gas discharge pipelines are one of the main causes of failure in a compressed gas system. Installation of shaped nozzles in the compressor discharge manifold is one of the new ideas to minimize this phenomenon. It has been proven that shaped nozzles technology is able to minimize the unfavorable phenomena of pressure pulsation and thus the pipeline vibration. The production of such components using 3D printing techniques is a very good solution, as they have complicated shapes and are individually produced for a specific installation. The world is currently struggling with an excess of waste and a shortage of energy. Therefore, modern technology should be part of the sustainable development strategy, according to which the amount of energy consumed during the processes should be reduced. This article presents the influence of shaped nozzles on the specific compression power mounted in the discharge manifolds of two different compressors: reciprocating and screw. This influence can also be estimated by a conceptual model presented in the article. Based on the values of specific compression power, obtained during carried out research, it can be concluded that 3D printed nozzles may have a minor impact on the energy efficiency of compression depending on their shape complexity
    corecore