49 research outputs found
Towards new recommendations to reduce the burden of alcohol-induced hypertension in the European Union
Background: Hazardous and harmful alcohol use and high blood pressure are central risk factors related to premature non-communicable disease (NCD) mortality worldwide. A reduction in the prevalence of both risk factors has been suggested as a route to reach the global NCD targets. This study aims to highlight that screening and interventions for hypertension and hazardous and harmful alcohol use in primary healthcare can contribute substantially to achieving the NCD targets. Methods: A consensus conference based on systematic reviews, meta-analyses, clinical guidelines, experimental studies, and statisticalmodelling which had been presented and discussed in five preparatory meetings, was undertaken. Specifically, we modelled changes in blood pressure distributions and potential lives saved for the five largest European countries if screening and appropriate intervention rates in primary healthcare settings were increased. Recommendations to handle alcohol-induced hypertension in primary healthcare settings were derived at the conference, and their degree of evidence was graded. Results: Screening and appropriate interventions for hazardous alcohol use and use disorders could lower blood pressure levels, but there is a lack in implementing these measures in European primary healthcare. Recommendations included (1) an increase in screening for hypertension (evidence grade: high), (2) an increase in screening and brief advice on hazardous and harmful drinking for people with newly detected hypertension by physicians, nurses, and other healthcare professionals (evidence grade: high), (3) the conduct of clinical management of less severe alcohol use disorders for incident people with hypertension in primary healthcare (evidence grade: moderate), and (4) screening for alcohol use in hypertension that is not well controlled (evidence grade: moderate). The first three measures were estimated to result in a decreased hypertension prevalence and hundreds of saved lives annually in the examined countries. Conclusions: The implementation of the outlined recommendations could contribute to reducing the burden associated with hypertension and hazardous and harmful alcohol use and thus to achievement of the NCD targets. Implementation should be conducted in controlled settings with evaluation, including, but not limited to, economic evaluation.Peer reviewe
Towards new recommendations to reduce the burden of alcohol-induced hypertension in the European Union
Background Hazardous and harmful alcohol use and high blood pressure are central risk factors related to premature non-communicable disease (NCD) mortality worldwide. A reduction in the prevalence of both risk factors has been suggested as a route to reach the global NCD targets. This study aims to highlight that screening and interventions for hypertension and hazardous and harmful alcohol use in primary healthcare can contribute substantially to achieving the NCD targets. Methods A consensus conference based on systematic reviews, meta-analyses, clinical guidelines, experimental studies, and statistical modelling which had been presented and discussed in five preparatory meetings, was undertaken. Specifically, we modelled changes in blood pressure distributions and potential lives saved for the five largest European countries if screening and appropriate intervention rates in primary healthcare settings were increased. Recommendations to handle alcohol-induced hypertension in primary healthcare settings were derived at the conference, and their degree of evidence was graded. Results Screening and appropriate interventions for hazardous alcohol use and use disorders could lower blood pressure levels, but there is a lack in implementing these measures in European primary healthcare. Recommendations included (1) an increase in screening for hypertension (evidence grade: high), (2) an increase in screening and brief advice on hazardous and harmful drinking for people with newly detected hypertension by physicians, nurses, and other healthcare professionals (evidence grade: high), (3) the conduct of clinical management of less severe alcohol use disorders for incident people with hypertension in primary healthcare (evidence grade: moderate), and (4) screening for alcohol use in hypertension that is not well controlled (evidence grade: moderate). The first three measures were estimated to result in a decreased hypertension prevalence and hundreds of saved lives annually in the examined countries. Conclusions The implementation of the outlined recommendations could contribute to reducing the burden associated with hypertension and hazardous and harmful alcohol use and thus to achievement of the NCD targets. Implementation should be conducted in controlled settings with evaluation, including, but not limited to, economic evaluation
RĂ´le des noyaux gris centraux dans le contrĂ´le cognitif de l'action : impact de la maladie de Parkinson et de ses traitements
Cognitive action control is a process that allows suppressing an inappropriate behavior to the benefit of an intentionally-guided action. It is particularly important in situations of conflict when alternative behaviors compete for their expression. This process relies mostly on cortical-subcortical networks which functioning is impaired by Parkinson’s disease. We were interested in the role of these different brain structures in cognitive action control by focusing on the impact of Parkinson’s diseases and its treatments. More precisely, we addressed the dynamic aspects of impulsive action selection and suppression as proposed by the recent activation-suppression model regarding oculomotor responses. We thus adapted a classical experimental conflict task, the Simon task, using eye movements, and validated its use within the context of the activation-suppression model. Our further work focused on the impact of several factors on cognitive action control. We showed that normal aging enhances impulsive action selection that could be compensated for by the set-up of a more efficient selective inhibition. These results are in accordance with recent theories proposing that age-related cognitive deficits are compensated for by an increased recruitment of prefrontal structures. Our results also revealed that Parkinson’s disease results in a strong increase in impulsive action selection which we attribute to the impairment of the cortical-basal ganglia loops. Finally, we were interested by the impact of deep brain stimulation of the subthalamic nucleus. Our preliminary results revealed no effect of this treatment on cognitive action control. We discuss all of our results according to previous researches on the brain structures involved in cognitive action control and we propose several perspective that can have a fundamental or clinical impact.Le contrôle cognitif de l’action est un processus permettant de supprimer un comportement inapproprié au profit d’une action dirigée par l’intention. Il est particulièrement important en situation de conflit où l’expression de comportements alternatifs entre en compétition. Ce processus est largement soutenu par des réseaux cortico-sous-corticaux frontaux dont le bon fonctionnement est impacté par la maladie de Parkinson. Nous nous sommes intéressés au rôle de ces différentes structures cérébrales dans le contrôle cognitif de l’action en s’appuyant sur l’impact de la maladie de Parkinson et de ses traitements. Plus précisément, nous avons discuté des aspects dynamiques de sélection et de suppression des réponses impulsives tel que proposé par le modèle d’activation-suppression dans le cas de réponses oculaires. Nous avons donc adapté une tâche expérimentale de conflit classique, la Simon task, utilisant les mouvements oculaires, et validé son utilisation de notre dans le cadre de ce modèle. Les travaux suivant ont porté sur l’impact de divers facteurs sur ce processus. Nous avons montré que le vieillissement normal exacerbe la sélection impulsive des actions qui pourrait être compensée par la mise en place d’une inhibition sélective plus efficace. Ces résultats sont en accord avec de récentes théories proposant le recrutement plus important des structures préfrontales afin de pallier aux déficits cognitifs entrainés par le vieillissement. Nos résultats ont également indiqué que la maladie de Parkinson entraine une augmentation très importante de la sélection impulsive des actions ce que nous attribuons au dysfonctionnement des boucles cortico-sous-corticales causé par la maladie. Finalement, nous nous sommes intéressés à l’impact de la stimulation cérébrale profonde du noyau subthalamique. Nos résultats préliminaires n’ont pas montré d’effet de ce traitement sur les capacités de contrôle cognitif de l’action. Nous discutons l’ensemble de nos résultats à la lumière des travaux majeurs portant sur les structures cérébrales impliquées dans le contrôle cognitif de l’action et proposons plusieurs perspectives de recherches pouvant avoir un impact fondamental ou clinique
Role of the basal ganglia in cognitive action control : the impact of Parkinson's disease and its treatments
Le contrôle cognitif de l’action est un processus permettant de supprimer un comportement inapproprié au profit d’une action dirigée par l’intention. Il est particulièrement important en situation de conflit où l’expression de comportements alternatifs entre en compétition. Ce processus est largement soutenu par des réseaux cortico-sous-corticaux frontaux dont le bon fonctionnement est impacté par la maladie de Parkinson. Nous nous sommes intéressés au rôle de ces différentes structures cérébrales dans le contrôle cognitif de l’action en s’appuyant sur l’impact de la maladie de Parkinson et de ses traitements. Plus précisément, nous avons discuté des aspects dynamiques de sélection et de suppression des réponses impulsives tel que proposé par le modèle d’activation-suppression dans le cas de réponses oculaires. Nous avons donc adapté une tâche expérimentale de conflit classique, la Simon task, utilisant les mouvements oculaires, et validé son utilisation de notre dans le cadre de ce modèle. Les travaux suivant ont porté sur l’impact de divers facteurs sur ce processus. Nous avons montré que le vieillissement normal exacerbe la sélection impulsive des actions qui pourrait être compensée par la mise en place d’une inhibition sélective plus efficace. Ces résultats sont en accord avec de récentes théories proposant le recrutement plus important des structures préfrontales afin de pallier aux déficits cognitifs entrainés par le vieillissement. Nos résultats ont également indiqué que la maladie de Parkinson entraine une augmentation très importante de la sélection impulsive des actions ce que nous attribuons au dysfonctionnement des boucles cortico-sous-corticales causé par la maladie. Finalement, nous nous sommes intéressés à l’impact de la stimulation cérébrale profonde du noyau subthalamique. Nos résultats préliminaires n’ont pas montré d’effet de ce traitement sur les capacités de contrôle cognitif de l’action. Nous discutons l’ensemble de nos résultats à la lumière des travaux majeurs portant sur les structures cérébrales impliquées dans le contrôle cognitif de l’action et proposons plusieurs perspectives de recherches pouvant avoir un impact fondamental ou clinique.Cognitive action control is a process that allows suppressing an inappropriate behavior to the benefit of an intentionally-guided action. It is particularly important in situations of conflict when alternative behaviors compete for their expression. This process relies mostly on cortical-subcortical networks which functioning is impaired by Parkinson’s disease. We were interested in the role of these different brain structures in cognitive action control by focusing on the impact of Parkinson’s diseases and its treatments. More precisely, we addressed the dynamic aspects of impulsive action selection and suppression as proposed by the recent activation-suppression model regarding oculomotor responses. We thus adapted a classical experimental conflict task, the Simon task, using eye movements, and validated its use within the context of the activation-suppression model. Our further work focused on the impact of several factors on cognitive action control. We showed that normal aging enhances impulsive action selection that could be compensated for by the set-up of a more efficient selective inhibition. These results are in accordance with recent theories proposing that age-related cognitive deficits are compensated for by an increased recruitment of prefrontal structures. Our results also revealed that Parkinson’s disease results in a strong increase in impulsive action selection which we attribute to the impairment of the cortical-basal ganglia loops. Finally, we were interested by the impact of deep brain stimulation of the subthalamic nucleus. Our preliminary results revealed no effect of this treatment on cognitive action control. We discuss all of our results according to previous researches on the brain structures involved in cognitive action control and we propose several perspective that can have a fundamental or clinical impact
Midfrontal theta phase coordinates behaviorally relevant brain computations during cognitive control
International audienceNeural oscillations are thought to provide a cyclic time frame for orchestrating brain computations. Following this assumption, midfrontal theta oscillations have recently been proposed to temporally organize brain computations during conflict processing. Using a multivariate analysis approach, we show that brain-behavior relationships during conflict tasks are modulated according to the phase of ongoing endogenous midfrontal theta oscillations recorded by scalp EEG. We found reproducible results in two independent datasets, using two different conflict tasks brain-behavior relationships (correlation between reaction time and theta power) were theta phase-dependent in a subject-specific manner, and these "behaviorally optimal" theta phases were also associated with fronto-parietal cross-frequency dynamics emerging as theta phase-locked beta power bursts. These effects were present regardless of the strength of conflict. Thus, these results provide empirical evidence that midfrontal theta oscillations are involved in cyclically orchestrating brain computations likely related to response execution during the tasks rather than purely related to conflict processing. More generally, this study supports the hypothesis that phase-based computation is an important mechanism giving rise to cognitive processing
Synchronization between Keyboard Typing and Neural Oscillations
International audienceRhythmic neural activity synchronizes with certain rhythmic behaviors, such as breathing, sniffing, saccades, and speech. The extent to which neural oscillations synchronize with higher-level and more complex behaviors is largely unknown. Here, we investigated electrophysiological synchronization with keyboard typing, which is an omnipresent behavior daily engaged by an uncountably large number of people. Keyboard typing is rhythmic, with frequency characteristics roughly the same as neural oscillatory dynamics associated with cognitive control, notably through midfrontal theta (4-7 Hz) oscillations. We tested the hypothesis that synchronization occurs between typing and midfrontal theta and breaks down when errors are committed. Thirty healthy participants typed words and sentences on a keyboard without visual feedback, while EEG was recorded. Typing rhythmicity was investigated by interkeystroke interval analyses and by a kernel density estimation method. We used a multivariate spatial filtering technique to investigate frequency-specific synchronization between typing and neuronal oscillations. Our results demonstrate theta rhythmicity in typing (around 6.5 Hz) through the two different behavioral analyses. Synchronization between typing and neuronal oscillations occurred at frequencies ranging from 4 to 15 Hz, but to a larger extent for lower frequencies. However, peak synchronization frequency was idiosyncratic across participants, therefore not specific to theta nor to midfrontal regions, and correlated somewhat with peak typing frequency. Errors and trials associated with stronger cognitive control were not associated with changes in synchronization at any frequency. As a whole, this study shows that brain-behavior synchronization does occur during keyboard typing but is not specific to midfrontal theta
Effect of Variability of Tissue Dielectric Properties on Transcranial Alternating Current Stimulation Induced Electric Field
International audienceTranscranial alternating current stimulation modeling is a common procedure to either predict the stimulation clinical effect or to design protocols with optimal parameters. Knowledge of dielectric properties of tissues, especially conductivity, is required to perform such modeling as prior information. However, the low-frequency values of dielectric properties of human tissues are still not well established, and vary between individuals. To address this, analysis of electric field variability due to conductivity variability was assessed recently in the literature. To date, no such analysis has been performed by including permittivity (or tissue capacity) and its own variability. The present study aims to fill this knowledge gap, test the hypothesis, and quantify whether the contribution of permittivity in the analysis of dielectric properties variability impacts the resulting variability of electric field estimation. Furthermore, we provide margins for the electric field and its focality using the extreme values of dielectric properties values reported in the literature. Our results suggest that electric field magnitude, and the component normal to the cortex, are sensitive to conductivity changes, but also to brain tissues permittivity, with an error of neglecting permittivity that can reach almost 40%. Overall, these results contribute to a better understanding of tACS computational modeling
Effect of Variability of Tissue Dielectric Properties on Transcranial Alternating Current Stimulation Induced Electric Field
International audienceTranscranial alternating current stimulation modeling is a common procedure to either predict the stimulation clinical effect or to design protocols with optimal parameters. Knowledge of dielectric properties of tissues, especially conductivity, is required to perform such modeling as prior information. However, the low-frequency values of dielectric properties of human tissues are still not well established, and vary between individuals. To address this, analysis of electric field variability due to conductivity variability was assessed recently in the literature. To date, no such analysis has been performed by including permittivity (or tissue capacity) and its own variability. The present study aims to fill this knowledge gap, test the hypothesis, and quantify whether the contribution of permittivity in the analysis of dielectric properties variability impacts the resulting variability of electric field estimation. Furthermore, we provide margins for the electric field and its focality using the extreme values of dielectric properties values reported in the literature. Our results suggest that electric field magnitude, and the component normal to the cortex, are sensitive to conductivity changes, but also to brain tissues permittivity, with an error of neglecting permittivity that can reach almost 40%. Overall, these results contribute to a better understanding of tACS computational modeling
Changes in electrophysiological aperiodic activity during cognitive control in Parkinson’s disease
International audienceCognitive symptoms in Parkinson’s disease are common and can significantly affect patients’ quality of life. Therefore, there is an urgent clinical need to identify a signature derived from behavioral and/or neuroimaging indicators that could predict which patients are at increased risk for early and rapid cognitive decline. Recently, converging evidence identified that aperiodic activity of the EEG reflects meaningful physiological information associated with age, development, cognitive and perceptual states or pathologies. In this study, we aimed to investigate aperiodic activity in Parkinson’s disease during cognitive control and characterize its possible association with behavior. Here, we recorded high-density EEG in 30 healthy controls and 30 Parkinson’s disease patients during a Simon task. We analyzed task-related behavioral data in the context of the activation-suppression model and extracted aperiodic parameters (offset, exponent) at both scalp and source levels. Our results showed lower behavioral performances in cognitive control as well as higher offsets in patients in the parieto-occipital areas, suggesting increased excitability in Parkinson’s disease. A small congruence effect on aperiodic parameters in pre- and post-central brain areas was also found, possibly associated with task execution. Significant differences in aperiodic parameters between the resting state, pre- and post-stimulus phases were seen across the whole brain, which confirmed that the observed changes in aperiodic activity are linked to task execution. No correlation was found between aperiodic activity and behavior or clinical features. Our findings provide evidence that EEG aperiodic activity in Parkinson’s disease is characterized by greater offsets, and that aperiodic parameters differ depending on arousal state. However, our results do not support the hypothesis that the behavior-related differences observed in Parkinson’s disease are related to aperiodic changes. Overall, this study highlights the importance of considering aperiodic activity contributions in brain disorders and further investigating the relationship between aperiodic activity and behavior
Effects of Parkinson's disease on cognitive action control: Insights on impulsive response tendencies using an oculomotor Simon task
International audienceObjectives: Cognitive action control allows suppressing automatic activation and producing a controlled response when conflicts arise. This process is modulated by the basal ganglia and recent studies have shown that it was impaired in Parkinson's disease (PD). This study gives insights regarding the effect of PD on cognitive action and more precisely on impulsive responses. Methods: 40 patients with PD with no cognitive impairment and 40 healthy controls (HC) underwent an oculomotor Simon task in which they were required to make a leftward or rightward eye movement according to the color of a target and to ignore its location. The two dimensions of the stimuli created congruent (color and location activating the same response) and incongruent (color and location activating conflicting responses) trials. Results were analyzed using distributional analysis according to the activation-suppression model. Results: PD patients had a greater congruence effect on both reaction time and accuracy rate demonstrating a greater difficulty to resolve conflicts. Distributional analysis revealed that PD patients made more fast errors than HC. The rate of impulsive errors was further correlated to the Barrat Impulsiveness Scale (BIS) scores. When they responded slower, PD patients were also impaired compared to HC. Conclusions: Our results show that both the automatic and controlled routes involved in the cognitive action control are affected in PD. Furthermore, impulsive response tendencies in PD measured by a conflict task seems related to behavioral impulsivity. Therefore, conflict tasks could be used to further study impulsivity in PD and its ability to detect early troubles should be investigate