8 research outputs found
Flavor Phenomenology in General 5D Warped Spaces
We have considered a general 5D warped model with SM fields propagating in
the bulk and computed explicit expressions for oblique and non-oblique
electroweak observables as well as for flavor and CP violating effective
four-fermion operators. We have compared the resulting lower bounds on the
Kaluza-Klein (KK) scale in the RS model and a recently proposed model with a
metric modified towards the IR brane, which is consistent with oblique
parameters without the need for a custodial symmetry. We have randomly
generated 40,000 sets of O(1) 5D Yukawa couplings and made a fit of the quark
masses and CKM matrix elements in both models. This method allows to identify
the percentage of points consistent with a given KK mass, which in turn
provides us with a measure for the required fine-tuning. Comparison with
current experimental data on Rb, FCNC and CP violating operators exhibits an
improved behavior of our model with respect to the RS model. In particular,
allowing 10% fine-tuning the combined results point towards upper bounds on the
KK gauge boson masses around 3.3 TeV in our model as compared with 13 TeV in
the RS model. One reason for this improvement is that fermions in our model are
shifted, with respect to fermions in the RS model, towards the UV brane thus
decreasing the strength of the modifications of electroweak observables.Comment: 28 pages, 7 figures, 4 table
Warped Electroweak Breaking Without Custodial Symmetry
We propose an alternative to the introduction of an extra gauge (custodial)
symmetry to suppress the contribution of KK modes to the T parameter in warped
theories of electroweak breaking. The mechanism is based on a general class of
warped 5D metrics and a Higgs propagating in the bulk. The metrics are nearly
AdS in the UV region but depart from AdS in the IR region, towards where KK
fluctuations are mainly localized, and have a singularity outside the slice
between the UV and IR branes. This gravitational background is generated by a
bulk stabilizing scalar field which triggers a natural solution to the
hierarchy problem. Depending on the model parameters, gauge-boson KK modes can
be consistent with present bounds on EWPT for m > 1 TeV at 95% CL. The model
contains a light Higgs mode which unitarizes the four-dimensional theory. The
reduction in the precision observables can be traced back to a large wave
function renormalization for this mode.Comment: 15 pages, 3 figure
Soft-Wall Stabilization
We propose a general class of five-dimensional soft-wall models with AdS
metric near the ultraviolet brane and four-dimensional Poincar\'e invariance,
where the infrared scale is determined dynamically. A large UV/IR hierarchy can
be generated without any fine-tuning, thus solving the electroweak/Planck scale
hierarchy problem. Generically, the spectrum of fluctuations is discrete with a
level spacing (mass gap) provided by the inverse length of the wall, similar to
RS1 models with Standard Model fields propagating in the bulk. Moreover two
particularly interesting cases arise. They can describe: (a) a theory with a
continuous spectrum above the mass gap which can model unparticles
corresponding to operators of a CFT where the conformal symmetry is broken by a
mass gap, and; (b) a theory with a discrete spectrum provided by linear Regge
trajectories as in AdS/QCD models.Comment: 27 pages, 6 figures, 1 table. v2: references added, version to appear
in NJP Focus Issue on Extra Dimension
Suppressing Electroweak Precision Observables in 5D Warped Models
We elaborate on a recently proposed mechanism to suppress large contributions
to the electroweak precision observables in five dimensional (5D) warped
models, without the need for an extended 5D gauge sector. The main ingredient
is a modification of the AdS metric in the vicinity of the infrared (IR) brane
corresponding to a strong deviation from conformality in the IR of the 4D
holographic dual. We compute the general low energy effective theory of the 5D
warped Standard Model, emphasizing additional IR contributions to the wave
function renormalization of the light Higgs mode. We also derive expressions
for the S and T parameters as a function of a generic 5D metric and zero-mode
wave functions. We give an approximate formula for the mass of the radion that
works even for strong deviation from the AdS background. We proceed to work out
the details of an explicit model and derive bounds for the first KK masses of
the various bulk fields. The radion is the lightest new particle although its
mass is already at about 1/3 of the mass of the lightest resonances, the KK
states of the gauge bosons. We examine carefully various issues that can arise
for extreme choices of parameters such as the possible reintroduction of the
hierarchy problem, the onset of nonperturbative physics due to strong IR
curvature or the creation of new hierarchies near the Planck scale. We conclude
that a KK scale of 1 TeV is compatible with all these constraints.Comment: 44 pages, 11 figures, references adde
Improving Naturalness in Warped Models with a Heavy Bulk Higgs
A Standard-Model-like Higgs boson should be light in order to comply with electroweak precision measurements from LEP. We consider warped models as UV completions of the Standard Model with a heavy Higgs. Provided the Higgs propagates in the 5D bulk, the KK modes of the gauge bosons can compensate for the Higgs contribution to oblique parameters while their masses lie within the range of the LHC reach