28 research outputs found
Atom-Specific Probing of Electron Dynamics in an Atomic Adsorbate by Time-Resolved X-Ray Spectroscopy
The electronic excitation occurring on adsorbates at ultrafast timescales from optical lasers that initiate surface chemical reactions is still an open question. Here, we report the ultrafast temporal evolution of x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) of a simple well-known adsorbate prototype system, namely carbon (C) atoms adsorbed on a nickel [Ni(100)] surface, following intense laser optical pumping at 400 nm. We observe ultrafast (âŒ100ââfs) changes in both XAS and XES showing clear signatures of the formation of a hot electron-hole pair distribution on the adsorbate. This is followed by slower changes on a few picoseconds timescale, shown to be consistent with thermalization of the complete C/Ni system. Density functional theory spectrum simulations support this interpretation
Atom-Specific Probing of Electron Dynamics in an Atomic Adsorbate by Time-Resolved X-ray Spectroscopy
The electronic excitation occurring on adsorbates at ultrafast time scales
from optical lasers that initiate surface chemical reactions is still an open
question. Here, we report the ultrafast temporal evolution of X-ray absorption
spectroscopy (XAS) and X-ray emission spectroscopy (XES) of a simple well known
adsorbate prototype system, namely carbon (C) atoms adsorbed on a nickel
(Ni(100)) surface, following intense laser optical pumping at 400 nm. We
observe ultrafast (~100 fs) changes in both XAS and XES showing clear
signatures of the formation of a hot electron-hole pair distribution on the
adsorbate. This is followed by slower changes on a few ps time scale, shown to
be consistent with thermalization of the complete C/Ni system. Density
functional theory spectrum simulations support this interpretation.Comment: 33 pages, 12 figures. Submitted to Physical Review Letter
Computational Studies of Chemical Interactions: Molecules, Surfaces and Copper Corrosion
The chemical bond â a corner stone in science and a prerequisite for life â is the focus of this thesis. Fundamental and applied aspects of chemical bonding are covered including the development of new computational methods for the characterization and rationalization of chemical interactions. The thesis also covers the study of corrosion of copper-based materials. The latter is motivated by the proposed use of copper as encapsulating material for spent nuclear fuel in Sweden. In close collaboration with experimental groups, state-of-the-art computational methods were employed for the study of chemistry at the atomic scale. First, oxidation of nanoparticulate copper was examined in anoxic aqueous media in order to better understand the copper-water thermodynamics in relation to the corrosion of copper material under oxygen free conditions. With a similar ambition, the water-cuprite interface was investigated with regards to its chemical composition and reactivity. This was compared to the behavior of methanol and hydrogen sulfide at the cuprite surface. An overall ambition during the development of computational methods for the analysis of chemical bonding was to bridge the gap between molecular and materials chemistry. Theory and results are thus presented and applied in both a molecular and a solid-state framework. A new property, the local electron attachment energy, for the characterization of a compoundâs local electrophilicity was introduced. Together with the surface electrostatic potential, the new property predicts and rationalizes regioselectivity and trends of molecular reactions, and interactions on metal and oxide nanoparticles and extended surfaces. Detailed atomistic understanding of chemical processes is a prerequisite for the efficient development of chemistry. We therefore envisage that the results of this thesis will find widespread use in areas such as heterogeneous catalysis, drug discovery, and nanotechnology.Den kemiska bindningen â en hörnsten inom naturvetenskapen och oumbĂ€rlig för allt liv â Ă€r det centrala temat i den hĂ€r avhandlingen. BĂ„de grundlĂ€ggande och tillĂ€mpade aspekter behandlas. Detta inkluderar utvecklingen av nya berĂ€kningsmetoder för förstĂ„else och karaktĂ€risering av kemiska interaktioner. Dessutom behandlas korrosion av kopparbaserade material. Det sistnĂ€mnda Ă€r motiverat av förslaget att anvĂ€nda koppar som inkapslingsmaterial för hanteringen av kĂ€rnavfall i Sverige. Kvantkemiska berĂ€kningsmetoder enligt state-of-the-art har anvĂ€nts för att studera kemi pĂ„ atomnivĂ„, detta i nĂ€ra sammabete med experimentella grupper. Initialt studerades oxidation av kopparnanopartiklar under syrgasfria och vattenrika förhĂ„llanden. Detta för att bĂ€ttre kartlĂ€gga koppar-vattensystemets termodynamik. Av samma orsak detaljstuderades Ă€ven grĂ€nsskiktet mellan vatten och kuprit med fokus pĂ„ dess kemiska sammansĂ€ttning och reaktivitet. Resultaten har jĂ€mförts med metanols och vĂ€tesulfids kemiska beteende pĂ„ ytan av kuprit. En övergripande mĂ„lsĂ€ttningen under arbetet med att utveckla nya berĂ€kningsbaserade analysverktyg för kemiska bindningar har varit att överbrygga gapet mellan molekylĂ€r- och materialkemi. DĂ€rför presenteras teoretiska aspekter samt tillĂ€mpningar frĂ„n bĂ„de ett molekylĂ€rt samt ett fast-fas perspektiv. En ny deskriptor för karaktĂ€risering av föreningars lokala elektrofilicitet har introducerats â den lokala elektronadditionsenergin. Tillsammans med den elektrostatiska potentialen uppvisar den nya deskriptorn förmĂ„ga att förutsĂ€ga samt förklara regioselektivitet och trender för molekylĂ€ra reaktioner, och för interaktioner pĂ„ metal- och oxidbaserade nanopartiklar och ytor. En detaljerad förstĂ„else av kemiska processer pĂ„ atomnivĂ„ Ă€r en nödvĂ€ndighet för ett effektivt utvecklande av kemivetenskapen. Vi förutspĂ„r dĂ€rför att resultaten frĂ„n den hĂ€r avhandlingen kommer att fĂ„ omfattande anvĂ€ndning inom omrĂ„den som heterogen katalys, lĂ€kemedelsdesign och nanoteknologi.QC 20170829</p
Computational Studies of Chemical Interactions: Molecules, Surfaces and Copper Corrosion
The chemical bond â a corner stone in science and a prerequisite for life â is the focus of this thesis. Fundamental and applied aspects of chemical bonding are covered including the development of new computational methods for the characterization and rationalization of chemical interactions. The thesis also covers the study of corrosion of copper-based materials. The latter is motivated by the proposed use of copper as encapsulating material for spent nuclear fuel in Sweden. In close collaboration with experimental groups, state-of-the-art computational methods were employed for the study of chemistry at the atomic scale. First, oxidation of nanoparticulate copper was examined in anoxic aqueous media in order to better understand the copper-water thermodynamics in relation to the corrosion of copper material under oxygen free conditions. With a similar ambition, the water-cuprite interface was investigated with regards to its chemical composition and reactivity. This was compared to the behavior of methanol and hydrogen sulfide at the cuprite surface. An overall ambition during the development of computational methods for the analysis of chemical bonding was to bridge the gap between molecular and materials chemistry. Theory and results are thus presented and applied in both a molecular and a solid-state framework. A new property, the local electron attachment energy, for the characterization of a compoundâs local electrophilicity was introduced. Together with the surface electrostatic potential, the new property predicts and rationalizes regioselectivity and trends of molecular reactions, and interactions on metal and oxide nanoparticles and extended surfaces. Detailed atomistic understanding of chemical processes is a prerequisite for the efficient development of chemistry. We therefore envisage that the results of this thesis will find widespread use in areas such as heterogeneous catalysis, drug discovery, and nanotechnology.Den kemiska bindningen â en hörnsten inom naturvetenskapen och oumbĂ€rlig för allt liv â Ă€r det centrala temat i den hĂ€r avhandlingen. BĂ„de grundlĂ€ggande och tillĂ€mpade aspekter behandlas. Detta inkluderar utvecklingen av nya berĂ€kningsmetoder för förstĂ„else och karaktĂ€risering av kemiska interaktioner. Dessutom behandlas korrosion av kopparbaserade material. Det sistnĂ€mnda Ă€r motiverat av förslaget att anvĂ€nda koppar som inkapslingsmaterial för hanteringen av kĂ€rnavfall i Sverige. Kvantkemiska berĂ€kningsmetoder enligt state-of-the-art har anvĂ€nts för att studera kemi pĂ„ atomnivĂ„, detta i nĂ€ra sammabete med experimentella grupper. Initialt studerades oxidation av kopparnanopartiklar under syrgasfria och vattenrika förhĂ„llanden. Detta för att bĂ€ttre kartlĂ€gga koppar-vattensystemets termodynamik. Av samma orsak detaljstuderades Ă€ven grĂ€nsskiktet mellan vatten och kuprit med fokus pĂ„ dess kemiska sammansĂ€ttning och reaktivitet. Resultaten har jĂ€mförts med metanols och vĂ€tesulfids kemiska beteende pĂ„ ytan av kuprit. En övergripande mĂ„lsĂ€ttningen under arbetet med att utveckla nya berĂ€kningsbaserade analysverktyg för kemiska bindningar har varit att överbrygga gapet mellan molekylĂ€r- och materialkemi. DĂ€rför presenteras teoretiska aspekter samt tillĂ€mpningar frĂ„n bĂ„de ett molekylĂ€rt samt ett fast-fas perspektiv. En ny deskriptor för karaktĂ€risering av föreningars lokala elektrofilicitet har introducerats â den lokala elektronadditionsenergin. Tillsammans med den elektrostatiska potentialen uppvisar den nya deskriptorn förmĂ„ga att förutsĂ€ga samt förklara regioselektivitet och trender för molekylĂ€ra reaktioner, och för interaktioner pĂ„ metal- och oxidbaserade nanopartiklar och ytor. En detaljerad förstĂ„else av kemiska processer pĂ„ atomnivĂ„ Ă€r en nödvĂ€ndighet för ett effektivt utvecklande av kemivetenskapen. Vi förutspĂ„r dĂ€rför att resultaten frĂ„n den hĂ€r avhandlingen kommer att fĂ„ omfattande anvĂ€ndning inom omrĂ„den som heterogen katalys, lĂ€kemedelsdesign och nanoteknologi.QC 20170829</p
Local Electron Attachment Energy and Its Use for Predicting Nucleophilic Reactions and Halogen Bonding
A new local property, the local electron attachment energy [E(r)], is introduced and is demonstrated to, be a useful guide to predict intermolecular interactions and chemical reactivity. The E(r) is analogous to the average local ionization energy but indicates susceptibility toward interactions with nucleophiles rather than electrophiles. The functional form E(r) is motivated based on Janak's theorem and the piecewise linear energy dependence of electron addition to atomic and molecular systems. Within the generalized Kohn-Sham method (GKS-DFT), only the virtual orbitals with negative eigenvalues contribute to E(r). In the, present study, E(r) has been computed from orbitals obtained from GKS-DFT computations with a hybrid exchange correlation functional. It is shown that E(r) computed on a molecular isodengty surface, E-S(r), reflects the regioselectivity and relative reactivity for nucleophilic aromatic substitution, nucleophilic addition to activated double bonds, and formation of halogen bonds. Good to excellent correlations between experimental or theoretical measures of interaction strengths and minima in E-S(r) (E-S,E-min) are demonstrated.QC 20170202</p
Extending the ÏâHole Concept to Metals: An Electrostatic Interpretation of the Effects of Nanostructure in Gold and Platinum Catalysis
Crystalline
surfaces of gold are chemically inert, whereas nanoparticles
of gold are excellent catalysts for many reactions. The catalytic
properties of nanostructured gold have been connected to increased
binding affinities of reactant molecules for low-coordinated Au atoms.
Here we show that the high reactivity at these sites is a consequence
of the formation of Ï-holes, i.e., maxima in the surface electrostatic
potential (<i>V</i><sub>S,max</sub>), due to the overlap
of mainly the valence s-orbitals when forming the bonding Ï-orbitals.
The Ï-holes are binding sites for Lewis bases, and binding energies
correlate with the magnitudes of the <i>V</i><sub>S,max</sub>. For symmetrical Au clusters, of varying sizes, the most positive <i>V</i><sub>S,max</sub> values are found at the corners, edges,
and surfaces (facets), decreasing in that order. This is in agreement
with the experimentally and theoretically observed dependence of catalytic
activity on local structure. The density of Ï-holes can explain
the increasing catalytic activity with decreasing particle size for
other transition metal catalysts also, such as platinum
Ï-Holes on Transition Metal Nanoclusters and Their Influence on the Local Lewis Acidity
Understanding the molecular interaction behavior of transition metal nanoclusters lies at the heart of their efficient use in, e.g., heterogeneous catalysis, medical therapy and solar energy harvesting. For this purpose, we have evaluated the applicability of the surface electrostatic potential [VS(r)] and the local surface electron attachment energy [ES(r)] properties for characterizing the local Lewis acidity of a series of low-energy TM13 transition metal nanoclusters (TM = Au, Cu, Ru, Rh, Pd, Ir, Pt, Co), including also Pt7Cu6. The clusters have been studied using hybrid KohnâSham density functional theory (DFT) calculations. The VS(r) and ES(r), evaluated at 0.001 a.u. isodensity contours, are used to analyze the interactions with H2O. We find that the maxima of VS(r), Ï-holes, are either localized or diffuse. This is rationalized in terms of the nanocluster geometry and occupation of the clustersâs, p and d valence orbitals. Our findings motivate a new scheme for characterizing Ï-holes as Ïs (diffuse), Ïp (localized) or Ïd (localized) depending on their electronic origin. The positions of the maxima in VS(r) (and minima in ES(r)) are found to coincide with O-down adsorption sites of H2O, whereas minima in VS(r) leads to H-down adsorption. Linear relationships between VS,max (and ES,min) and H2O interaction energies are further discussed.20170816</p
Theoretical Investigation into Rate-Determining Factors in Electrophilic Aromatic Halogenation
The
halogenation of monosubstituted benzenes in aqueous solvent
was studied using density functional theory at the PCM-M06-2<i>X</i>/6-311GÂ(d,p) level. The reaction with Cl<sub>2</sub> begins
with the formation of C atom coordinated Ï-complex and is followed
by the formation of the Ï-complex, which is rate-determining.
The final part proceeds via the abstraction of the proton by a water
molecule or a weak base. We evaluated the use of the Ï-complex
as a model for the rate-determining transition state (TS) and found
that this model is more accurate the later the TS comes along the
reaction coordinate. This explains the higher accuracy of the model
for halogenations (late TS) compared to nitrations (early TS); that
is, the more deactivated the substrate the later the TS. The halogenation
with Br<sub>2</sub> proceeds with a similar mechanism as the corresponding
chlorination, but the bromination has a very late rate-determining
TS that is similar to the Ï-complex in energy. The iodination
with ICl follows a different mechanism than chlorination and bromination.
After the formation of the Ï-complex, the reaction proceeds
in a concerted manner without a Ï-complex. This reaction has
a large primary hydrogen kinetic isotope effect in agreement with
experimental observations
High-Density Isolated Fe 1 O 3 Sites on a Single-Crystal Cu 2 O(100) Surface
International audienc