10 research outputs found

    Primary temporal bone angiosarcoma: a case report.

    Full text link
    We present a rare case of temporal bone angiosarcoma diagnosed in a 26-year-old female patient at 36 week of pregnancy. The patient was referred with a 2 months history of left otalgia and tinnitus with a tender swelling above the mastoid. Cranial imaging studies showed a 7 x 5 x 4 cm hypervascularized mass located in the left middle fossa with lysis of the temporal bone and extension to the subcutis. After the baby was delivered by caesarean section, the patient entered the oncology protocol. Selective embolization of the feeding vessels was followed by gross total surgical resection using a combined supra- and infra-tentorial approach. Pathological findings were those of a poorly differentiated, highly malignant sarcoma with a large epitheloid component and immunohistochemical evidence of endothelial differentiation (CD31, Factor VIII related antigen, CD34), consistent with an angiosarcoma with epitheloid features. No extra-cranial tumor was found after extensive staging. The patient received adjuvant radiotherapy followed by a course of chemotherapy consisting of 6 cycles of paclitaxel. At 15 months follow-up, she developed multiple distant metastasis to a left postauricular lymph node and to the lungs and ribs. The patient was given a second line chemotherapy using doxorubicine and ifosfamide. Despite an initial good response, she died with metastatic disease 26 months after diagnosis. We present a rare case of primary temporal bone angiosarcoma and report our experience with a multimode therapeutic approach combining surgery, radiotherapy and chemotherapy.Peer reviewe

    Introducing a 3-dimensionally Printed, Tissue-Engineered Graft for Airway Reconstruction: A Pilot Study

    No full text
    OBJECTIVE: To use 3-dimensional (3D) printing and tissue engineering to create a graft for laryngotracheal reconstruction (LTR). STUDY DESIGN: In vitro and in vivo pilot animal study. SETTING: Large tertiary care academic medical center. SUBJECTS AND METHODS: A 3D computer model of an anterior LTR graft was designed. That design was printed with polylactic acid on a commercially available 3D printer. The scaffolds were seeded with mature chondrocytes and collagen gel and cultured in vitro for up to 3 weeks. Scaffolds were evaluated in vitro for cell viability and proliferation. Anterior graft LTR was performed on 9 New Zealand white rabbits with the newly created scaffolds. Three animals were sacrificed at each time point (4, 8, and 12 weeks). The in vivo graft sites were assessed via bronchoscopy and histology. RESULTS: The in vitro cell proliferation assay demonstrated initial viability of 87.5%. The cells proliferated during the study period, doubling over the first 7 days. Histology revealed that the cells retained their cartilaginous properties during the 21-day study period. In vivo testing showed that all animals survived for the duration of the study. Bronchoscopy revealed a well-mucosalized tracheal lumen with no evidence of scarring or granulation tissue. Histology indicated the presence of newly formed cartilage in the region where the graft was present. CONCLUSIONS: Our results indicate that it is possible to produce a custom-designed, 3D-printed, tissue-engineered graft for airway reconstruction

    Posttreatment prognosis of patients with esthesioneuroblastoma

    No full text
    corecore