386 research outputs found

    Structures of Sortase B from Staphylococcus aureus and Bacillus anthracis Reveal Catalytic Amino Acid Triad in the Active Site

    Get PDF
    Surface proteins attached by sortases to the cell wall envelope of bacterial pathogens play important roles during infection. Sorting and attachment of these proteins is directed by C-terminal signals. Sortase B of S. aureus recognizes a motif NPQTN, cleaves the polypeptide after the Thr residue, and attaches the protein to pentaglycine cross-bridges. Sortase B of B. anthracis is thought to recognize the NPKTG motif, and attaches surface proteins to m-diaminopimelic acid cross-bridges. We have determined crystal structure of sortase B from B. anthracis and S. aureus at 1.6 and 2.0 Å resolutions, respectively. These structures show a β-barrel fold with α-helical elements on its outside, a structure thus far exclusive to the sortase family. A putative active site located on the edge of the β-barrel is comprised of a Cys-His-Asp catalytic triad and presumably faces the bacterial cell surface. A putative binding site for the sorting signal is located nearby

    Structures of complexes comprised of Fischerella transcription factor HetR with Anabaena DNA targets

    Get PDF
    HetR is an essential regulator of heterocyst development in cyanobacteria. Many mutations in HetR render Anabaena incapable of nitrogen fixation. The protein binds to a DNA palindrome upstream of hetP and other genes. We have determined the crystal structures of HetR complexed with palindromic DNA targets, 21, 23, and 29 bp at 2.50-, 3.00-, and 3.25-Å resolution, respectively. The highest-resolution structure shows fine details of specific protein–DNA interactions. The lower-resolution structures with longer DNA duplexes have similar interaction patterns and show how the flap domains interact with DNA in a sequence nonspecific fashion. Fifteen of 15 protein–DNA contacts predicted on the basis of the structure were confirmed by single amino acid mutations that abolished binding in vitro and complementation in vivo. A striking feature of the structure is the association of glutamate 71 from each subunit of the HetR dimer with three successive cytosines in each arm of the palindromic target, a feature that is conserved among all known heterocyst-forming cyanobacteria sequenced to date

    Karyotype and nuclear DNA content of hexa-, octo-, and duodecaploid lines of Bromus subgen. Ceratochloa

    Get PDF
    The subgenus Ceratochloa of the genus Bromus includes a number of closely related allopolyploid forms or species that present a difficult taxonomic problem. The present work combines data concerning chromosome length, heterochromatin distribution and nuclear genome size of different 6x, 8x and 12x accessions in this subgenus. Special attention is paid to the karyotype structure and genomic constitution of duodecaploid plants recently found in South America. Hexaploid lineages possess six almost indistinguishable genomes and a nuclear DNA content between 12.72 pg and 15.10 pg (mean 1Cx value = 2.32 pg), whereas octoploid lineages contain the same six genomes (AABBCC) plus two that are characterized by longer chromosomes and a greater DNA content (1Cx = 4.47 pg). Two duodecaploid accessions found in South America resemble each other and apparently differ from the North American duodecaploid B. arizonicus as regards chromosome size and nuclear DNA content (40.00 and 40.50 pg vs. 27.59 pg). These observations suggest that the South American duodecaploids represent a separate evolutionary lineage of the B. subgenus Ceratochloa, unrecognized heretofore

    Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: carbon and energy flow contribute to the distinct biofilm growth state.

    Get PDF
    BackgroundDesulfovibrio vulgaris Hildenborough is a sulfate-reducing bacterium (SRB) that is intensively studied in the context of metal corrosion and heavy-metal bioremediation, and SRB populations are commonly observed in pipe and subsurface environments as surface-associated populations. In order to elucidate physiological changes associated with biofilm growth at both the transcript and protein level, transcriptomic and proteomic analyses were done on mature biofilm cells and compared to both batch and reactor planktonic populations. The biofilms were cultivated with lactate and sulfate in a continuously fed biofilm reactor, and compared to both batch and reactor planktonic populations.ResultsThe functional genomic analysis demonstrated that biofilm cells were different compared to planktonic cells, and the majority of altered abundances for genes and proteins were annotated as hypothetical (unknown function), energy conservation, amino acid metabolism, and signal transduction. Genes and proteins that showed similar trends in detected levels were particularly involved in energy conservation such as increases in an annotated ech hydrogenase, formate dehydrogenase, pyruvate:ferredoxin oxidoreductase, and rnf oxidoreductase, and the biofilm cells had elevated formate dehydrogenase activity. Several other hydrogenases and formate dehydrogenases also showed an increased protein level, while decreased transcript and protein levels were observed for putative coo hydrogenase as well as a lactate permease and hyp hydrogenases for biofilm cells. Genes annotated for amino acid synthesis and nitrogen utilization were also predominant changers within the biofilm state. Ribosomal transcripts and proteins were notably decreased within the biofilm cells compared to exponential-phase cells but were not as low as levels observed in planktonic, stationary-phase cells. Several putative, extracellular proteins (DVU1012, 1545) were also detected in the extracellular fraction from biofilm cells.ConclusionsEven though both the planktonic and biofilm cells were oxidizing lactate and reducing sulfate, the biofilm cells were physiologically distinct compared to planktonic growth states due to altered abundances of genes/proteins involved in carbon/energy flow and extracellular structures. In addition, average expression values for multiple rRNA transcripts and respiratory activity measurements indicated that biofilm cells were metabolically more similar to exponential-phase cells although biofilm cells are structured differently. The characterization of physiological advantages and constraints of the biofilm growth state for sulfate-reducing bacteria will provide insight into bioremediation applications as well as microbially-induced metal corrosion

    Functional plasticity of antibacterial EndoU toxins.

    Get PDF
    Bacteria use several different secretion systems to deliver toxic EndoU ribonucleases into neighboring cells. Here, we present the first structure of a prokaryotic EndoU toxin in complex with its cognate immunity protein. The contact-dependent growth inhibition toxin CdiA-CTSTECO31 from Escherichia coli STEC_O31 adopts the eukaryotic EndoU fold and shares greatest structural homology with the nuclease domain of coronavirus Nsp15. The toxin contains a canonical His-His-Lys catalytic triad in the same arrangement as eukaryotic EndoU domains, but lacks the uridylate-specific ribonuclease activity that characterizes the superfamily. Comparative sequence analysis indicates that bacterial EndoU domains segregate into at least three major clades based on structural variations in the N-terminal subdomain. Representative EndoU nucleases from clades I and II degrade tRNA molecules with little specificity. In contrast, CdiA-CTSTECO31 and other clade III toxins are specific anticodon nucleases that cleave tRNAGlu between nucleotides C37 and m2 A38. These findings suggest that the EndoU fold is a versatile scaffold for the evolution of novel substrate specificities. Such functional plasticity may account for the widespread use of EndoU effectors by diverse inter-bacterial toxin delivery systems

    Inhibition of the \u3cem\u3edapE\u3c/em\u3e-Encoded \u3cem\u3eN\u3c/em\u3e-Succinyl- ʟ, ʟ-diaminopimelic Acid Desuccinylase from \u3cem\u3eNeisseria meningitidis\u3c/em\u3e by ʟ-Captopril

    Get PDF
    Binding of the competitive inhibitor ʟ-captopril to the dapE-encoded N-succinyl-ʟ, ʟ-diaminopimelic acid desuccinylase from Neisseria meningitidis (NmDapE) was examined by kinetic, spectroscopic, and crystallographic methods. ʟ-Captopril, an angiotensin-converting enzyme (ACE) inhibitor, was previously shown to be a potent inhibitor of the DapE from Haemophilus influenzae (HiDapE) with an IC50 of 3.3 μM and a measured Ki of 1.8 μM and displayed a dose-responsive antibiotic activity toward Escherichia coli. ʟ-Captopril is also a competitive inhibitor of NmDapE with a Ki of 2.8 μM. To examine the nature of the interaction of ʟ-captopril with the dinuclear active site of DapE, we have obtained electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) data for the enzymatically hyperactive Co(II)-substituted forms of both HiDapE and NmDapE. EPR and MCD data indicate that the two Co(II) ions in DapE are antiferromagnetically coupled, yielding an S = 0 ground state, and suggest a thiolate bridge between the two metal ions. Verification of a thiolate-bridged dinuclear complex was obtained by determining the three-dimensional X-ray crystal structure of NmDapE in complex with ʟ-captopril at 1.8 Å resolution. Combination of these data provides new insights into binding of ʟ-captopril to the active site of DapE enzymes as well as important inhibitor–active site residue interaction’s. Such information is critical for the design of new, potent inhibitors of DapE enzymes

    Phylogenetic relationships within Orobanche and Phelipanche (Orobanchaceae) from Central Europe, focused on problematic aggregates, taxonomy, and host ranges

    Get PDF
    Holoparasitic genera within the family Orobanchaceae are characterized by greatly reduced vegetative organs; therefore, molecular analysis has proved to be a useful tool in solving taxonomic problems in this family. For this purpose, we studied all species of the genera Orobanche and Phelipanche occurring in Central Europe, specifically in Poland, the Czech Republic, Slovakia, and Austria, supplemented by samples mainly from Spain, France, Germany, and Ukraine. They were investigated using nuclear sequences (ITS region) and a plastid trnL- trnF region. The aim of this study was to examine phylogenetic relationships within Orobanche and Phelipanche from Central Europe; we focused on problematic species and aggregates, recent taxonomic changes in these (rank and secondary ranks), and host ranges. The most interesting results concern the exlusion of O. mayeri from O. alsatica aggr. Additionally, following the rules of traditional taxonomy, the correct names and types of some secondary ranks are given and, as a result of this, a new combination below the Phelipanche genus is made ( P . sect. Trionychon ). The host ranges of the investigated species in Central Europe include 102 species from 12 families, most often from Asteraceae. For this purpose, ca. 400 localities were examined in the field. Moreover, data acquired from the literature and European and Asian herbaria were use

    Application of phenotypic microarrays to environmental microbiology

    Get PDF
    Environmental organisms are extremely diverse and only a small fraction has been successfully cultured in the laboratory. Culture in micro wells provides a method for rapid screening of a wide variety of growth conditions and commercially available plates contain a large number of substrates, nutrient sources, and inhibitors, which can provide an assessment of the phenotype of an organism. This review describes applications of phenotype arrays to anaerobic and thermophilic microorganisms, use of the plates in stress response studies, in development of culture media for newly discovered strains, and for assessment of phenotype of environmental communities. Also discussed are considerations and challenges in data interpretation and visualization, including data normalization, statistics, and curve fitting

    Functional responses of methanogenic archaea to syntrophic growth.

    Get PDF
    Methanococcus maripaludis grown syntrophically with Desulfovibrio vulgaris was compared with M. maripaludis monocultures grown under hydrogen limitation using transcriptional, proteomic and metabolite analyses. These measurements indicate a decrease in transcript abundance for energy-consuming biosynthetic functions in syntrophically grown M. maripaludis, with an increase in transcript abundance for genes involved in the energy-generating central pathway for methanogenesis. Compared with growth in monoculture under hydrogen limitation, the response of paralogous genes, such as those coding for hydrogenases, often diverged, with transcripts of one variant increasing in relative abundance, whereas the other was little changed or significantly decreased in abundance. A common theme was an apparent increase in transcripts for functions using H(2) directly as reductant, versus those using the reduced deazaflavin (coenzyme F(420)). The greater importance of direct reduction by H(2) was supported by improved syntrophic growth of a deletion mutant in an F(420)-dependent dehydrogenase of M. maripaludis. These data suggest that paralogous genes enable the methanogen to adapt to changing substrate availability, sustaining it under environmental conditions that are often near the thermodynamic threshold for growth. Additionally, the discovery of interspecies alanine transfer adds another metabolic dimension to this environmentally relevant mutualism
    corecore