103 research outputs found

    Resolving single Cu nanoparticle oxidation and Kirkendall void formation with in situ plasmonic nanospectroscopy and electrodynamic simulations

    Get PDF
    Copper nanostructures are ubiquitous in microelectronics and heterogeneous catalysis and their oxidation is a topic of high current interest and broad relevance. It relates to important questions, such as catalyst active phase, activity and selectivity, as well as fatal failure of microelectronic devices. Despite the obvious importance of understanding the mechanism of Cu nanostructure oxidation, numerous open questions remain, including under what conditions homogeneous oxide layer growth occurs and when the nanoscale Kirkendall void forms. Experimentally, this is not trivial to investigate because when a large number of nanoparticles are simultaneously probed, ensemble averaging makes rigorous conclusions difficult. On the other hand, when (in situ) electron-microscopy approaches with single nanoparticle resolution are applied, concerns about beam effects that may both reduce the oxide or prevent oxidation via the deposition and cross-linking of carbonaceous species cannot be neglected. In response we present how single particle plasmonic nanospectroscopy can be used for the in situ real time characterization of multiple individual Cu nanoparticles during oxidation. Our analysis of their optical response combined with post mortem electron microscopy imaging and detailed Finite-Difference Time-Domain electrodynamics simulations enables in situ identification of the oxidation mechanism both in the initial oxide shell growth phase and during Kirkendall void formation, as well as the transition between them. In a wider perspective, this work presents the foundation for the application of single particle plasmonic nanospectroscopy in investigations of the impact of parameters like particle size, shape and grain structure with respect to defects and grain boundaries on the oxidation of metal nanoparticles

    Bandpass Filtering of DNA Elastic Modes Using Confinement and Tension

    Get PDF
    During a variety of biological and technological processes, biopolymers are simultaneously subject to both confinement and external forces. Although significant efforts have gone into understanding the physics of polymers that are only confined, or only under tension, little work has been done to explore the effects of the interplay of force and confinement. Here, we study the combined effects of stretching and confinement on a polymer’s configurational freedom. We measure the elastic response of long double-stranded DNA molecules that are partially confined to thin, nanofabricated slits. We account for the data through a model in which the DNA’s short-wavelength transverse elastic modes are cut off by applied force and the DNA’s bending stiffness, whereas long-wavelength modes are cut off by confinement. Thus, we show that confinement and stretching combine to permit tunable bandpass filtering of the elastic modes of long polymers

    Grain-growth mediated hydrogen sorption kinetics and compensation effect in single Pd nanoparticles

    Get PDF
    Grains constitute the building blocks of polycrystalline materials and their boundaries determine bulk physical properties like electrical conductivity, diffusivity and ductility. However, the structure and evolution of grains in nanostructured materials and the role of grain boundaries in reaction or phase transformation kinetics are poorly understood, despite likely importance in catalysis, batteries and hydrogen energy technology applications. Here we report an investigation of the kinetics of (de)hydriding phase transformations in individual Pd nanoparticles. We find dramatic evolution of single particle grain morphology upon cyclic exposure to hydrogen, which we identify as the reason for the observed rapidly slowing sorption kinetics, and as the origin of the observed kinetic compensation effect. These results shed light on the impact of grain growth on kinetic processes occurring inside nanoparticles, and provide mechanistic insight in the observed kinetic compensation effect. Grains are the building blocks of crystalline solids. Here the authors show how hydrogen-sorption induced grain-growth in Pd nanoparticles slows down the hydrogen sorption kinetics and constitutes the physical origin of corresponding kinetic compensation

    Nanoplasmonic−nanofluidic single-molecule biosensors for ultrasmall sample volumes

    Get PDF
    Detection of small amounts of biological compounds is of ever-increasing importance but also remains an experimental challenge. In this context, plasmonic nanoparticles have emerged as strong contenders enabling label-free optical sensing with single-molecule resolution. However, the performance of a plasmonic single-molecule biosensor is not only dependent on its ability to detect a molecule but equally importantly on its efficiency to transport it to the binding site. Here, we present a theoretical study of the impact of downscaling fluidic structures decorated with plasmonic nanoparticles from conventional microfluidics to nanofluidics. We find that for ultrasmall picolitre sample volumes, nanofluidics enables unprecedented binding characteristics inaccessible with conventional microfluidic devices, and that both detection times and number of detected binding events can be improved by several orders of magnitude. Therefore, we propose nanoplasmonic−nanofluidic biosensing platforms as an efficient tool that paves the way for label-free single-molecule detection from ultrasmall volumes, such as single cells

    A Microshutter for the Nanofabrication of Plasmonic Metal Alloys with Single Nanoparticle Composition Control

    Get PDF
    Alloying offers an increasingly important handle in nanomaterials design in addition to the already widely explored size and geometry of nanostructures of interest. As the key trait, the mixing of elements at the atomic level enables nanomaterials with physical or chemical properties that cannot be obtained by a single element alone, and subtle compositional variations can significantly impact these properties. Alongside the great potential of alloying, the experimental scrutiny of its impact on nanomaterial function is a challenge because the parameter space that encompasses nanostructure size, geometry, chemical composition, and structural atomic-level differences among individuals is vast and requires unrealistically large sample sets if statistically relevant and systematic data are to be obtained. To address this challenge, we have developed a microshutter device for spatially highly resolved physical vapor deposition in the lithography-based fabrication of nanostructured surfaces. As we demonstrate, it enables establishing compositional gradients across a surface with single nanostructure resolution in terms of alloy composition, which subsequently can be probed in a single experiment. As a showcase, we have nanofabricated arrays of AuAg, AuPd, and AgPd alloy nanoparticles with compositions systematically controlled at the level of single particle rows, as verified by energy dispersive X-ray and single particle plasmonic nanospectroscopy measurements, which we also compared to finite-difference time-domain simulations. Finally, motivated by their application in state-of-the-art plasmonic hydrogen sensors, we investigated PdAu alloy gradient arrays for their hydrogen sorption properties. We found distinctly composition-dependent kinetics and hysteresis and revealed a composition-dependent contribution of a single nanoparticle response to the ensemble average, which highlights the importance of alloy composition screening in single experiments with single nanoparticle resolution, as offered by the microshutter nanofabrication approach

    Label-free Imaging of Catalytic H2O2 Decomposition on Single Colloidal Pt Nanoparticles using Nanofluidic Scattering Microscopy

    Full text link
    Single particle catalysis aims at determining factors that dictate nanoparticle activity and selectivity. Existing methods often use fluorescent model reactions at low reactant concentrations, operate at low pressures, or rely on plasmonic enhancement effects. Hence, methods to measure single nanoparticle activity at technically relevant conditions, and without fluorescence or other enhancement mechanisms, are still lacking. Here, we introduce nanofluidic scattering microscopy to fill this gap. By detecting minuscule refractive index changes in a liquid flushed through a nanochannel, we demonstrate that local H2O2 concentration changes in water can be accurately measured. Applying this principle, we analyze the H2O2 concentration profiles adjacent to single colloidal Pt nanoparticles during catalytic H2O2 decomposition into O2 and H2O and derive the particles individual turnover frequencies from the growth rate of O2 gas bubbles formed in their respective nanochannel during reaction

    Shedding light on CO oxidation surface chemistry on single Pt catalyst nanoparticles inside a nanofluidic model pore

    Get PDF
    Investigating a catalyst under relevant application conditions is experimentally challenging and parameters like reaction conditions in terms of temperature, pressure, and reactant mixing ratios, as well as catalyst design, may significantly impact the obtained experimental results. For Pt catalysts widely used for the oxidation of carbon monoxide, there is keen debate on the oxidation state of the surface at high temperatures and at/above atmospheric pressure, as well as on the most active surface state under these conditions. Here, we employ a nanoreactor in combination with single-particle plasmonic nanospectroscopy to investigate individual Pt catalyst nanoparticles localized inside a nanofluidic model pore during carbon monoxide oxidation at 2 bar in the 450-550 K temperature range. As a main finding, we demonstrate that our single-particle measurements effectively resolve a kinetic phase transition during the reaction and that each individual particle has a unique response. Based on spatially resolved measurements, we furthermore observe how reactant concentration gradients formed due to conversion inside the model pore give rise to position-dependent kinetic phase transitions of the individual particles. Finally, employing extensive electrodynamics simulations, we unravel the surface chemistry of the individual Pt nanoparticles as a function of reactant composition and find strongly temperature-dependent Pt-oxide formation and oxygen spillover to the SiO2 support as the main processes. These results therefore support the existence of a Pt surface oxide in the regime of high catalyst activity and demonstrate the possibility to use plasmonic nanospectroscopy in combination with nanofluidics as a tool for in situ studies of individual catalyst particles

    Operando detection of single nanoparticle activity dynamics inside a model pore catalyst material

    Get PDF
    Nanoconfinement in porous catalysts may induce reactant concentration gradients inside the pores due to local conversion. This leads to inefficient active material use since parts of the catalyst may be trapped in an inactive state. Experimentally, these effects remain unstudied due to material complexity and required high spatial resolution. Here, we have nanofabricated quasi-two-dimensional mimics of porous catalysts, which combine the traits of nanofluidics with single particle plasmonics and online mass spectrometry readout. Enabled by single particle resolution at operando conditions during CO oxidation over a Cu model catalyst, we directly visualize reactant concentration gradient formation due to conversion on single Cu nanoparticles inside the “model pore” and how it dynamically controls oxidation state-and, thus, activity-of particles downstream. Our results provide a general framework for single particle catalysis in the gas phase and highlight the importance of single particle approaches for the understanding of complex catalyst materials

    Nanoplasmonic NO2Sensor with a Sub-10 Parts per Billion Limit of Detection in Urban Air

    Get PDF
    Urban air pollution is a critical health problem in cities all around the world. Therefore, spatially highly resolved real-time monitoring of airborne pollutants, in general, and of nitrogen dioxide, NO2, in particular, is of utmost importance. However, highly accurate but fixed and bulky measurement stations or satellites are used for this purpose to date. This defines a need for miniaturized NO2 sensor solutions with detection limits in the low parts per billion range to finally enable indicative air quality monitoring at low cost that facilitates detection of highly local emission peaks and enables the implementation of direct local actions like traffic control, to immediately reduce local emissions. To address this challenge, we present a nanoplasmonic NO2 sensor based on arrays of Au nanoparticles coated with a thin layer of polycrystalline WO3, which displays a spectral redshift in the localized surface plasmon resonance in response to NO2. Sensor performance is characterized under (i) idealized laboratory conditions, (ii) conditions simulating humid urban air, and (iii) an outdoor field test in a miniaturized device benchmarked against a commercial NO2 sensor approved according to European and American standards. The limit of detection of the plasmonic solution is below 10 ppb in all conditions. The observed plasmonic response is attributed to a combination of charge transfer between the WO3 layer and the plasmonic Au nanoparticles, WO3 layer volume expansion, and changes in WO3 permittivity. The obtained results highlight the viability of nanoplasmonic gas sensors, in general, and their potential for practical application in indicative urban air monitoring, in particular

    Light-Off in Plasmon-Mediated Photocatalysis

    Get PDF
    In plasmon-mediated photocatalysis it is of critical importance to differentiate light-induced catalytic reaction rate enhancement channels, which include near-field effects, direct hot carrier injection, and photothermal catalyst heating. In particular, the discrimination of photothermal and hot electron channels is experimentally challenging, and their role is under keen debate. Here we demonstrate using the example of CO oxidation over nanofabricated neat Pd and Au50Pd50 alloy catalysts, how photothermal rate enhancement differs by up to 3 orders of magnitude for the same photon flux, and how this effect is controlled solely by the position of catalyst operation along the light-off curve measured in the dark. This highlights that small fluctuations in reactor temperature or temperature gradients across a sample may dramatically impact global and local photothermal rate enhancement, respectively, and thus control both the balance between different rate enhancement mechanisms and the way strategies to efficiently distinguish between them should be devised
    corecore