2 research outputs found

    Differential Immunogenicity and Protective Efficacy Elicited by MTO- and DMT-Adjuvanted CMFO Subunit Vaccines against Mycobacterium tuberculosis Infection

    No full text
    Tuberculosis (TB) remains a major and global problem of public health. An effective TB subunit vaccine is urgently needed. Proper selection of the delivery system for the vaccine is crucial for inducing an appropriate immune response tailored to control the target pathogen. In this study, we compared the immunogenicity and protective efficacy of CMFO subunit vaccines against primary progressive TB in two different adjuvant systems: the MTO oil-in-water (O/W) emulsion composed of monophosphoryl lipid A (MPL), trehalose-6,60-dibehenate (TDB), and oil in water emulsion MF59 and the DMT liposome containing dimethyldioctadecylammonium bromide (DDA), monophosphoryl lipid A (MPL), and trehalose-6,60-dibehenate (TDB). Our results demonstrated that the DMT-adjuvanted CMFO could confer more significant protection against M. tuberculosis infection than the CMFO/MTO did in mice. In particular, the adjuvant DMT showed a stronger ability than the O/W emulsion to adjuvant CMFO subunit vaccine and enhanced protection, attributed to elicit Th1-biased responses, strong Th1/Th17 cytokine responses, and IFN-γ+ or IL-2+ T cell responses. Therefore, our findings demonstrate that the liposome delivery system shows more effectiveness to adjuvant TB subunit vaccine than O/W emulsion and highlight the importance of adjuvant formulation for the better efficacy of a protein vaccine

    Label-Free Comparative Proteomics of Differentially Expressed Mycobacterium tuberculosis Protein in Rifampicin-Related Drug-Resistant Strains

    No full text
    Rifampicin (RIF) is one of the most important first-line anti-tuberculosis (TB) drugs, and more than 90% of RIF-resistant (RR) Mycobacterium tuberculosis clinical isolates belong to multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. In order to identify specific candidate target proteins as diagnostic markers or drug targets, differential protein expression between drug-sensitive (DS) and drug-resistant (DR) strains remains to be investigated. In the present study, a label-free, quantitative proteomics technique was performed to compare the proteome of DS, RR, MDR, and XDR clinical strains. We found iniC, Rv2141c, folB, and Rv2561 were up-regulated in both RR and MDR strains, while fadE9, espB, espL, esxK, and Rv3175 were down-regulated in the three DR strains when compared to the DS strain. In addition, lprF, mce2R, mce2B, and Rv2627c were specifically expressed in the three DR strains, and 41 proteins were not detected in the DS strain. Functional category showed that these differentially expressed proteins were mainly involved in the cell wall and cell processes. When compared to the RR strain, Rv2272, smtB, lpqB, icd1, and folK were up-regulated, while esxK, PPE19, Rv1534, rpmI, ureA, tpx, mpt64, frr, Rv3678c, esxB, esxA, and espL were down-regulated in both MDR and XDR strains. Additionally, nrp, PPE3, mntH, Rv1188, Rv1473, nadB, PPE36, and sseA were specifically expressed in both MDR and XDR strains, whereas 292 proteins were not identified when compared to the RR strain. When compared between MDR and XDR strains, 52 proteins were up-regulated, while 45 proteins were down-regulated in the XDR strain. 316 proteins were especially expressed in the XDR strain, while 92 proteins were especially detected in the MDR strain. Protein interaction networks further revealed the mechanism of their involvement in virulence and drug resistance. Therefore, these differentially expressed proteins are of great significance for exploring effective control strategies of DR-TB
    corecore