7 research outputs found

    Acute Effects of Split Pea-Enriched White Pan Bread on Postprandial Glycemic and Satiety Responses in Healthy Volunteers—A Randomized Crossover Trial

    No full text
    Pulse consumption has been associated with reduced postprandial glucose response (PPGR) and improved satiety. The objective of this study was (i) to investigate the effects of fortifying white pan bread with split yellow pea (Pisum sativum L.) flour on PPGR and appetite-related sensations, and (ii) to determine whether Revtech heat processing of pea flour alters the postprandial effects. A randomized controlled crossover trial was performed with 24 healthy adults. Participants consumed 50 g available carbohydrate from bread containing 20% pea flour that was untreated (USYP), Revtech processed at 140 °C with no steam (RT0%), Revtech processed at 140 °C with 10% steam (RT10%), or a control bread with 100% white wheat flour (100%W). Blood samples were analyzed for glucose and plasma insulin at 0, 15, 30, 45, 60, 90, and 120 min post-meal. Appetite sensations and product acceptability were measured using visual analogue and 9-point hedonic scales. Results showed no significant difference in the postprandial glucose and insulin responses of different bread treatments. However, pea-containing variants resulted in 18% higher fullness and 16–18% lower hunger, desire to eat, and prospective food consumption ratings compared to 100% W. No differences in the aroma, flavor, color, and overall acceptability of different bread products were observed. This trial supports using pea flour as a value-added ingredient to improve the short-term appetite-related sensations of white pan bread without affecting the overall acceptability

    TAB2, a nucleoside diphosphate protein kinase, is a component of the tMEK2 disease resistance pathway in tomato

    No full text
    Signal transduction is used by plants to coordinate their development and to sense and respond to fluctuations in their surroundings. With previous proteomics approaches, we specifically studied activation events downstream of tMEK2, a mitogen-activated protein kinase kinase (MAPKK), in tomato. LC-MS/MS revealed a group of phosphoproteins in tMEK2MUT-transgenic tomato plants, where tMEK2 was constitutively activated. Of particular interest is TAB2

    TaFLRS, a novel mitogen-activated protein kinase in wheat defence responses

    No full text
    Plants respond to biotic and abiotic stresses through the activation and coordination of various signalling pathways. The activation often requires the phosphorylation of proteins. In this study, we have identified the wheat TaFLRS MAP kinase (Fusarium and Leaf Rust Sensitive) gene that was upregulated in a wheat EST (expressed sequence tag) array analysis following a wheat-leaf rust interactive challenge. Our results demonstrate that TaFLRS is transcriptionally upregulated in incompatible interactions involving wheat and leaf rust and Fusarium graminearum, suggesting that

    MALDI-Qq-TOF-MS and transient gene expression analysis indicated co-enhancement of β-1,3-glucanase and endochitinase by tMEK2 and the involvement of divergent pathways

    No full text
    A mitogen-activated protein kinase (MAPK) pathway has been demonstrated as a key pathway in plant defense against pathogen attacks. With proteomics approaches, we specifically studied activation events downstream of a MAPK kinase, tMEK2, in tomato. Overexpression of a constitutively activated tomato MAPK kinase gene (tMEK2MUT) enhanced resistance of transgenic tomato lines to the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Pathogenesis-related genes, PR1b1, β-1,3-glucanase, and endochitinase were up-regulated by tMEK2MUT. Two-dimensional electrophoresis and matrix-assisted l

    Ginseng Berry Extract Rich in Phenolic Compounds Attenuates Oxidative Stress but not Cardiac Remodeling post Myocardial Infarction

    No full text
    The cardioprotective effects of ginseng root extracts have been reported. However, nothing is known about the myocardial actions of the phenolic compounds enriched in ginseng berry. Therefore, this study was undertaken to investigate the effects of American ginseng berry extract (GBE) in an experimental model of myocardial infarction (MI). Coronary artery ligation was performed on Sprague⁻Dawley male rats to induce MI after which animals were randomized into groups receiving either distilled water or GBE intragastrically for 8 weeks. Echocardiography and assays for malondialdehyde (MDA) and TNF-α were conducted. Flow cytometry was used to test the effects of GBE on T cell phenotypes and cytokine production. Although GBE did not improve the cardiac functional parameters, it significantly attenuated oxidative stress in post-MI rat hearts. GBE treatment also resulted in lower than control levels of TNF-α in post-MI rat hearts indicating a strong neutralizing effect of GBE on this cytokine. However, there was no effect of GBE on the proportion of different T cell subsets or ex-vivo cytokine production. Taken together, the present study demonstrates GBE reduces oxidative stress, however no effect on cardiac structure and function in post-MI rats. Moreover, reduction of TNF-α levels below baseline raises concern regarding its use as prophylactic or preventive adjunct therapy in cardiovascular disease
    corecore