21 research outputs found

    Gold nanoparticles as a potent radiosensitizer in neutron therapy.

    No full text
    The purpose of this study was to investigate the potential of gold nanoparticles as radiosensitizer for use in neutron therapy against hepatocellular carcinoma. The hepatocellular carcinoma cells lines Huh7 and HepG2 were irradiated with γ and neutron radiation in the presence or absence of gold nanoparticles. Effects were evaluated by transmission electron microscopy, cell survival, cell cycle, DNA damage, migration, and invasiveness. Gold nanoparticles significantly enhanced the radiosensitivity of Huh7 and HepG2 cells to γ-rays by 1.41- and 1.16-fold, respectively, and by 1.80- and 1.35-fold to neutron radiation, which has high linear energy transfer. Accordingly, exposure to neutron radiation in the presence of gold nanoparticles induced cell cycle arrest, DNA damage, and cell death to a significantly higher extent, and suppressed cell migration and invasiveness more robustly. These effects are presumably due to the ability of gold nanoparticles to amplify the effective dose from neutron radiation more efficiently. The data suggest that gold nanoparticles may be clinically useful in combination therapy against hepatocellular carcinoma by enhancing the toxicity of radiation with high linear energy transfer

    Functional Biological Activity of Sorafenib as a Tumor-Treating Field Sensitizer for Glioblastoma Therapy.

    No full text
    Glioblastoma, the most common primary brain tumor in adults, is an incurable malignancy with poor short-term survival and is typically treated with radiotherapy along with temozolomide. While the development of tumor-treating fields (TTFields), electric fields with alternating low and intermediate intensity has facilitated glioblastoma treatment, clinical outcomes of TTFields are reportedly inconsistent. However, combinatorial administration of chemotherapy with TTFields has proven effective for glioblastoma patients. Sorafenib, an anti-proliferative and apoptogenic agent, is used as first-line treatment for glioblastoma. This study aimed to investigate the effect of sorafenib on TTFields-induced anti-tumor and anti-angiogenesis responses in glioblastoma cells in vitro and in vivo. Sorafenib sensitized glioblastoma cells to TTFields, as evident from significantly decreased post-TTFields cell viability ( < 0.05), and combinatorial treatment with sorafenib and TTFields accelerated apoptosis via reactive oxygen species (ROS) generation, as evident from Poly (ADP-ribose) polymerase (PARP) cleavage. Furthermore, use of sorafenib plus TTFields increased autophagy, as evident from LC3 upregulation and autophagic vacuole formation. Cell cycle markers accumulated, and cells underwent a G2/M arrest, with an increased G0/G1 cell ratio. In addition, the combinatorial treatment significantly inhibited tumor cell motility and invasiveness, and angiogenesis. Our results suggest that combination therapy with sorafenib and TTFields is slightly better than each individual therapy and could potentially be used to treat glioblastoma in clinic, which requires further studies

    Tumor-treating fields induce autophagy by blocking the Akt2/miR29b axis in glioblastoma cells.

    No full text
    Tumor-treating fields (TTFs) - a type of electromagnetic field-based therapy using low-intensity electrical fields - has recently been characterized as a potential anticancer therapy for glioblastoma multiforme (GBM). However, the molecular mechanisms involved remain poorly understood. Our results show that the activation of autophagy contributes to the TTF-induced anti-GBM activity in vitro or in vivo and GBM patient stem cells or primary in vivo culture systems. TTF-treatment upregulated several autophagy-related genes (~2-fold) and induced cytomorphological changes. TTF-induced autophagy in GBM was associated with decreased Akt2 expression, not Akt1 or Akt3, via the mTOR/p70S6K pathway. An Affymetrix GeneChip miRNA 4.0 Array analysis revealed that TTFs altered the expression of many microRNAs (miRNAs). TTF-induced autophagy upregulated miR-29b, which subsequently suppressed the Akt signaling pathway. A luciferase reporter assay confirmed that TTFs induced miR-29b to target Akt2, negatively affecting Akt2 expression thereby triggering autophagy. TTF-induced autophagy suppressed tumor growth in GBM mouse models subjected to TTFs as determined by positron emission tomography and computed tomography (PET-CT). GBM patient stem cells and a primary in vivo culture system with high Akt2 levels also showed TTF-induced inhibition. Taken together, our results identified autophagy as a critical cell death pathway triggered by TTFs in GBM and indicate that TTF is a potential treatment option for GBM
    corecore