60 research outputs found
Circadian clock genes and seasonal behaviour
Circadian and photoperiodic phenomena serve to organize the temporal
pattern of various biological processes. While the former generates endogenous daily
rhythms, the latter is related to seasonality. In Drosophila melanogaster, the gene
timeless (tim) encodes a cardinal component of the circadian clock and also
contributes to photoperiodism, which is observed as an adult reproductive diapause.
In this work, natural tim variants were examined for diapause across different
temperatures and photoperiods. The newly derived allele, ls-tim, exhibited
consistently higher diapause levels than the ancestral one, s-tim, implicating a putative
adaptive advantage in the seasonal European environment and providing a perfect
substrate for the recently proposed scenario of directional selection.
To investigate further genetic links between circadian and photoperiodic
mechanisms, classical clock mutations and transgenes were placed on a natural
congenic background and assayed for locomotor activity behaviour and diapause
response. Surprisingly, the results not only highlighted the importance of tim, and its
natural alleles, but also revealed the participation of other clock components in
diapause, suggesting that both daily and seasonal timers might have molecularly coevolved.
The phenotypic effects promoted by ls-tim arise from the protein isoform LTIM,
which expresses an additional N-terminal fragment. To study the adaptive
significance of the N-terminal residues, including putative phosphorylation sites, a
number of mutagenized TIM constructs were generated and functionally analysed. At
the molecular level, it was demonstrated that both the N-terminus length and the order
of its residues are important variables modulating the interaction dynamics between
TIM and CRYPTOCHROME (CRY). At the behaviour level, the overall amino acid
composition, rather than a particular order, appeared to be more critical for the phaseshift
responses. Interestingly, despite the functional importance of the N-terminus, a
deletion mapping analysis revealed that CRY directly binds to a protein sequence
located at TIM C-terminus
<i>Phlebotomus papatasi</i> circadian rhythm pathway annotation.
Phlebotomus papatasi circadian rhythm pathway annotation.</p
Assembly statistics.
Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.</div
BUSCO analysis.
Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.</div
Glycosidase Hydrolase family 13 annotation.
Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.</div
Conflicting phylogenetic signals.
Analysis of the gene phylogenies of individual orthologous groups identified three major topologies with sand fly-mosquito (41%), sand fly-fly (37%), or mosquito-fly (22%) sister clades. Comparisons of average branch lengths for each topology suggest that, although substitution rates in flies are always higher, orthologs that support the sand fly-mosquito topology show the lowest substitution rates in flies and the smallest differences in substitution rates among the fly, sand fly, and mosquito clades. In contrast, the sand fly-fly and mosquito-fly topologies show much higher substitution rates in flies and much greater differences in substitution rates among the three clades. (TIF)</p
Chitinase family annotation.
Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.</div
Molecular phylogenetic analysis of <i>Lu</i>. <i>longipalpis</i>, <i>P</i>. <i>papatasi</i> and <i>D</i>. <i>melanogaster</i> TRP channel sequences.
The different TRP subfamilies are displayed on the right. The evolutionary history was inferred by using the Maximum Likelihood method based on the Whelan and Goldman +Freq. model with 1000 bootstrap replicates. (TIF)</p
Parameter values of male copulatory songs from <i>Lutzomyia longipalpis</i> from Araci and Olindina.
Parameter values of male copulatory songs from Lutzomyia longipalpis from Araci and Olindina.</p
Mitogen activated protein kinase family annotation.
Mitogen activated protein kinase family annotation.</p
- …