225 research outputs found

    Potential zoonotic sources of SARS‐CoV‐2 infections

    Get PDF
    The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causing coronavirus disease-2019 (COVID-19) likely has evolutionary origins in other animals than humans based on genetically related viruses existing in rhinolophid bats and pangolins. Similar to other animal coronaviruses, SARS-CoV-2 contains a functional furin cleavage site in its spike protein, which may broaden the SARS-CoV-2 host range and affect pathogenesis. Whether ongoing zoonotic infections are possible in addition to efficient human-to-human transmission remains unclear. In contrast, human-to-animal transmission can occur based on evidence provided from natural and experimental settings. Carnivores, including domestic cats, ferrets and minks, appear to be particularly susceptible to SARS-CoV-2 in contrast to poultry and other animals reared as livestock such as cattle and swine. Epidemiologic evidence supported by genomic sequencing corroborated mink-to-human transmission events in farm settings. Airborne transmission of SARS-CoV-2 between experimentally infected cats additionally substantiates the possibility of cat-to-human transmission. To evaluate the COVID-19 risk represented by domestic and farmed carnivores, experimental assessments should include surveillance and health assessment of domestic and farmed carnivores, characterization of the immune interplay between SARS-CoV-2 and carnivore coronaviruses, determination of the SARS-CoV-2 host range beyond carnivores and identification of human risk groups such as veterinarians and farm workers. Strategies to mitigate the risk of zoonotic SARS-CoV-2 infections may have to be developed in a One Health framework and non-pharmaceutical interventions may have to consider free-roaming animals and the animal farming industry

    Natural co‐infection of divergent hepatitis B and C virus homologues in carnivores

    Get PDF
    In humans, co-infection of hepatitis B and C viruses (HBV, HCV) is common and aggravates disease outcome. Infection-mediated disease aggravation is poorly understood, partly due to lack of suitable animal models. Carnivores are understudied for hepatitis virus homologues. We investigated Mexican carnivores (ringtails, Bassariscus astutus) for HBV and HCV homologues. Three out of eight animals were infected with a divergent HBV termed ringtail HBV (RtHBV) at high viral loads of 5 x 10(9) -1.4 x 10(10) copies/ml serum. Two of the RtHBV-infected animals were co-infected with a divergent hepacivirus termed ringtail hepacivirus (RtHV) at 4 x 10(6)-7.5 x 10(7) copies/ml in strain-specific qRT-PCR assays. Immunofluorescence assays relying on HBV core and RtHV NS3/4a proteins indicated that none of the animals had detectable hepadnavirus core-specific antibodies, whereas one RtHV-infected animal had concomitant RtHV-specific antibodies at 1:800 end-point titre. RtHBV and RtHV complete genomes showed typical HBV and HCV structure and length. All RtHBV genomes were identical, whereas RtHV genomes showed four amino acid substitutions located predominantly in the E1/E2-encoding genomic regions. Both RtHBV (>28% genomic nucleotide sequence distance) and RtHV (>30% partial NS3/NS5B amino acid sequence distance) formed new species within their virus families. Evolutionary analyses showed that RtHBV grouped with HBV homologues from different laurasiatherian hosts (carnivores, bats, and ungulates), whereas RtHV grouped predominantly with rodent-borne viruses. Ancestral state reconstructions showed that RtHV, but not RtHBV, likely emerged via a non-recent host switch involving rodent-borne hepacivirus ancestors. Conserved hepatitis virus infection patterns in naturally infected ringtails indicate that carnivores may be promising animal models to understand HBV/HCV co-infection

    The Canine Morbillivirus Strain Associated with An Epizootic in Caspian Seals Provides New Insights into the Evolutionary History of this Virus

    Get PDF
    Canine morbillivirus (canine distemper virus; CDV) is a worldwide distributed morbillivirus that causes sporadic cases and recurrent epizootics among an increasing number of wild, feral, and domestic animal species. We investigated the evolutionary history of CDV strains involved in the 1988 Lake Baikal (CDVPS88) and the 2000 Caspian Sea (CDVPC00) seal die-offs by recovery of full-length sequences from archived material using next-generation sequencing. Bayesian phylogenetic analyses indicated that CDVPC00 constitutes a novel strain in a separate clade (tentatively termed "Caspian") from the America-1 clade, which is comprised of older vaccine strains. The America-1/Caspian monophyletic group is positioned most basally with respect to other clades and is estimated to have separated from other CDV clades around 1832. Our results indicate that CDVPC00 recovered from the epizootic in the Caspian Sea in 2000 belongs to a previously undetected novel clade and constitutes the most ancestral wild-type CDV clade

    How behavioural science can contribute to health partnerships: The case of The Change Exchange

    Get PDF
    © 2017 The Author(s). Background: Health partnerships often use health professional training to change practice with the aim of improving quality of care. Interventions to change practice can learn from behavioural science and focus not only on improving the competence and capability of health professionals but also their opportunity and motivation to make changes in practice. We describe a project that used behavioural scientist volunteers to enable health partnerships to understand and use the theories, techniques and assessments of behavioural science. Case studies: This paper outlines how The Change Exchange, a collective of volunteer behavioural scientists, worked with health partnerships to strengthen their projects by translating behavioural science in situ. We describe three case studies in which behavioural scientists, embedded in health partnerships in Uganda, Sierra Leone and Mozambique, explored the behaviour change techniques used by educators, supported knowledge and skill development in behaviour change, monitored the impact of projects on psychological determinants of behaviour and made recommendations for future project developments. Discussion: Challenges in the work included having time and space for behavioural science in already very busy health partnership schedules and the difficulties in using certain methods in other cultures. Future work could explore other modes of translation and further develop methods to make them more culturally applicable. Conclusion: Behavioural scientists could translate behavioural science which was understood and used by the health partnerships to strengthen their project work

    Density of Healthcare Providers and Patient Outcomes: Evidence from a Nationally Representative Multi-Site HIV Treatment Program in Uganda

    Get PDF
    This study examined the association between density of healthcare providers and patient outcomes using a large nationally representative cohort of patients receiving combination antiretroviral therapy (cART) in Uganda.Objective: We examined the association between density of healthcare providers and patient outcomes using a large nationally representative cohort of patients receiving combination antiretroviral therapy (cART) in Uganda. Design: We obtained data from The AIDS Support Organization (TASO) in Uganda. Patients 18 years of age and older who initiated cART at TASO between 2004 and 2008 contributed to this analysis. The number of healthcare providers per 100 patients, the number of patients lost to follow-up per 100 person years and number of deaths per 100 person years were calculated. Spearman correlation was used to identify associations between patient loss to follow-up and mortality with the healthcare provider-patient ratios. Results: We found no significant associations between the number of patients lost to follow-up and physicians (p = 0.45), nurses (p = 0.93), clinical officers (p = 0.80), field officers (p = 0.56), and healthcare providers overall (p = 0.83). Similarly, no significant associations were observed between mortality and physicians (p = 0.65), nurses (p = 0.49), clinical officers (p = 0.73), field officers (p = 0.78), and healthcare providers overall (p = 0.73). Conclusions: Patient outcomes, as measured by loss to follow-up and mortality, were not significantly associated with the number of doctors, nurses, clinical officers, field officers, or healthcare providers overall. This may suggest that that other factors, such as the presence of volunteer patient supporters or broader political or socioeconomic influences, may be more closely associated with outcomes of care among patients on cART in Uganda

    An evolutionary divergent pestivirus lacking the Npro gene systemically infects a whale species

    Get PDF
    Pestiviruses typically infect members of the order Artiodactyla, including ruminants and pigs, although putative rat and bat pestiviruses have also been described. In the present study, we identified and characterized an evolutionary divergent pestivirus in the toothed whale species, harbour porpoise (Phocoena phocoena). We tentatively named the virus Phocoena pestivirus (PhoPeV). PhoPeV displays a typical pestivirus genome organization except for the unique absence of Npro, an N-terminal autoprotease that targets the innate host immune response. Evolutionary evidence indicates that PhoPeV emerged following an interspecies transmission event from an ancestral pestivirus that expressed Npro. We show that 9% (n = 10) of stranded porpoises from the Dutch North Sea coast (n = 112) were positive for PhoPeV and they displayed a systemic infection reminiscent of non-cytopathogenic persistent pestivirus infection. The identification of PhoPeV extends the host range of pestiviruses to cetaceans (dolphins, whales, porpoises), which are considered to have evolved from artiodactyls (even-toed ungulates). Elucidation of the pathophysiology of PhoPeV infection and Npro unique absence will add to our understanding of molecular mechanisms governing pestivirus pathogenesis

    Human-Comfortable Collision Free Navigation for Personal Aerial Vehicles

    Get PDF
    Semi- or fully-autonomous Personal Aerial Vehicles (PAVs) are currently studied and developed by public and private organizations as a solution for traffic congestion. While optimal collision-free navigation algorithms have been proposed for autonomous robots, trajectories and accelerations for PAVs should also take into account human comfort. In this work, we propose a reactive decentralized collision avoidance strategy that incorporates passenger physiological comfort based on the Optimal Reciprocal Collision Avoidance strategy [1]. We study in simulation the effects of increasing PAV densities on the level of comfort, on the relative flight time and on the number of collisions per flight hour and demonstrate that our strategy reduces collision risk for platforms with limited dynamic range. Finally, we validate our strategy with a swarm of 10 quadcopters flying outdoors
    • 

    corecore