60 research outputs found

    Application of a Spectral Method to Simulate Quasi-Three-Dimensional Underwater Acoustic Fields

    Full text link
    The solution and synthesis of quasi-three-dimensional sound fields have always been core issues in computational ocean acoustics. Traditionally, finite difference algorithms have been employed to solve these problems. In this paper, a novel numerical algorithm based on the spectral method is devised. The quasi-three-dimensional problem is transformed into a problem resembling a two-dimensional line source using an integral transformation strategy. Then, a stair-step approximation is adopted to address the range dependence of the two-dimensional problem; because this approximation is essentially a discretization, the range-dependent two-dimensional problem is further simplified into a one-dimensional problem. Finally, we apply the Chebyshev--Tau spectral method to accurately solve the one-dimensional problem. We present the corresponding numerical program for the proposed algorithm and describe some representative numerical examples. The simulation results ultimately verify the reliability and capability of the proposed algorithm.Comment: 43 pages, 20 figures. arXiv admin note: text overlap with arXiv:2112.1360

    OsYSL6 Is Involved in the Detoxification of Excess Manganese in Rice1[W][OA]

    No full text
    Yellow Stripe-Like (YSL) proteins belong to the oligopeptide transporter family and have been implicated in metal transport and homeostasis in different plant species. Here, we functionally characterized a rice (Oryza sativa) YSL member, OsYSL6. Knockout of OsYSL6 resulted in decreased growth of both roots and shoots only in the high-manganese (Mn) condition. There was no difference in the concentration of total Mn and other essential metals between the wild-type rice and the knockout line, but the knockout line showed a higher Mn concentration in the leaf apoplastic solution and a lower Mn concentration in the symplastic solution than wild-type rice. OsYSL6 was constitutively expressed in both the shoots and roots, and the expression level was not affected by either deficiency or toxicity of various metals. Furthermore, the expression level increased with leaf age. Analysis with OsYSL6 promoter-green fluorescent protein transgenic rice revealed that OsYSL6 was expressed in all cells of both the roots and shoots. Heterogolous expression of OsYSL6 in yeast showed transport activity for the Mn-nicotianamine complex but not for the Mn-mugineic acid complex. Taken together, our results suggest that OsYSL6 is a Mn-nicotianamine transporter that is required for the detoxification of excess Mn in rice

    Seismic response analysis of frame structures with uneven settlement of foundation considering soil-structure interaction

    No full text
    Uneven settlement of foundation (USF) has a significant effect on the seismic response of rigid foundation structures. However, the main reason for USF is that the balance between superstructure and site soil is failure. For investigating seismic response characteristics of the USF structure considering soil-structure interaction (SSI), USF closer to reality is achieved by nonlinear direct integration method and Stage-Construction method. And the model reliability is verified by Sway-Rocking model and Lagrange energy method. Five different models, three seismic intensities, and different values of USF are performed. The natural period, inter-story drift ratios, the plastic hinges rate, and torsional angles are extracted to investigate structural seismic response. The results show that the effect of SSI on the magnitude of increase in structural inter-story drift ratio is not monotonous with the increase of USF in the presence of earthquakes. The USF structure considering SSI may significantly affect its seismic response, and will suffer more structural damage compared to the rigid foundation and the even settlement foundation. The rigid foundation structure with large value of USF leads to severe stretching on the settlement area and increases damage to the structure. Finally, the USF structures have relatively large torsional angles at the top story, and will exhibit significant torsional behavior. Hence, it is necessary and reasonable to consider SSI in the seismic design of USF structures. The research results can provide some references for seismic design

    A real-time non-contact monitoring method of subsea pipelines

    No full text
    To monitoring the subsea pipeline in real-time, a special potentiometric sensor array and a potential prediction model are presented in this paper. Firstly, to measure the potential of seawater, a special potentiometric sensor array with Ag/AgCl all-solid-state reference electrodes is first developed in this paper. Secondly, according to the obtained distribution law of electric field intensities a prediction model of the pipeline potentials is developed. Finally, the potentiometric sensor array is applied in sink experiment and the prediction model is validated by the sink measurements. The maximum error for pipeline potential prediction model is 1.1 mV. The proposed non-contact monitoring method for subsea pipeline can predict the potential of sea pipeline in real-time, thus providing important information for further subsea pipeline maintenance

    A real-time non-contact monitoring method of subsea pipelines

    No full text
    To monitoring the subsea pipeline in real-time, a special potentiometric sensor array and a potential prediction model are presented in this paper. Firstly, to measure the potential of seawater, a special potentiometric sensor array with Ag/AgCl all-solid-state reference electrodes is first developed in this paper. Secondly, according to the obtained distribution law of electric field intensities a prediction model of the pipeline potentials is developed. Finally, the potentiometric sensor array is applied in sink experiment and the prediction model is validated by the sink measurements. The maximum error for pipeline potential prediction model is 1.1 mV. The proposed non-contact monitoring method for subsea pipeline can predict the potential of sea pipeline in real-time, thus providing important information for further subsea pipeline maintenance

    A real-time non-contact monitoring method of subsea pipelines

    No full text
    To monitoring the subsea pipeline in real-time, a special potentiometric sensor array and a potential prediction model are presented in this paper. Firstly, to measure the potential of seawater, a special potentiometric sensor array with Ag/AgCl all-solid-state reference electrodes is first developed in this paper. Secondly, according to the obtained distribution law of electric field intensities a prediction model of the pipeline potentials is developed. Finally, the potentiometric sensor array is applied in sink experiment and the prediction model is validated by the sink measurements. The maximum error for pipeline potential prediction model is 1.1 mV. The proposed non-contact monitoring method for subsea pipeline can predict the potential of sea pipeline in real-time, thus providing important information for further subsea pipeline maintenance
    corecore