62 research outputs found

    Adaptive digital watermarking scheme based on support vector machines and optimized genetic algorithm

    Get PDF
    Digital watermarking is an effective solution to the problem of copyright protection, thus maintaining the security of digital products in the network. An improved scheme to increase the robustness of embedded information on the basis of discrete cosine transform (DCT) domain is proposed in this study. The embedding process consisted of two main procedures. Firstly, the embedding intensity with support vector machines (SVMs) was adaptively strengthened by training 1600 image blocks which are of different texture and luminance. Secondly, the embedding position with the optimized genetic algorithm (GA) was selected. To optimize GA, the best individual in the first place of each generation directly went into the next generation, and the best individual in the second position participated in the crossover and the mutation process. The transparency reaches 40.5 when GA’s generation number is 200. A case study was conducted on a 256 × 256 standard Lena image with the proposed method. After various attacks (such as cropping, JPEG compression, Gaussian low-pass filtering (3, 0. 5), histogram equalization, and contrast increasing (0.5, 0.6)) on the watermarked image, the extracted watermark was compared with the original one. Results demonstrate that the watermark can be effectively recovered after these attacks. Even though the algorithm is weak against rotation attacks, it provides high quality in imperceptibility and robustness and hence it is a successful candidate for implementing novel image watermarking scheme meeting real timelines

    Effects of Elevated Ozone Levels on Photosynthesis, Biomass and Non-structural Carbohydrates of Phoebe bournei and Phoebe zhennan in Subtropical China

    Get PDF
    To assess the impacts of ozone (O3) on carbon metabolism of subtropical broadleaved tree species, seedlings of Phoebe bournei and Phoebe zhennan were exposed to elevated O3 levels in open-top chambers (OTCs) from June to November 2014. Three treatments were conducted in nine total OTCs, including charcoal-filter air (CF) as a control treatment, low O3 treatment ‘O3-1’ (∼100 nl l-1), and high O3 treatment ‘O3-2’ (∼150 nl l-1). Our findings demonstrated that elevated O3 levels significantly decreased the net photosynthesis rates (Pn) and leaf, root, and total biomass of both species, while it did not significantly affect the root/shoot ratio in P. bournei and P. zhennan. O3-1 treatments significantly increased water soluble carbohydrates (WSC) in leaves of both tree species, while only increased the total non-structural carbohydrates (TNC) and starch in leaves of P. bournei; effects on P. zhennan were equivalent in comparison to the control treatment (CF). Likewise, there was no effect of treatment on the polysaccharide content of both tree species. The contents of polysaccharide, starch contents in fine roots of both species, and TNC in fine roots of P. bournei increased significantly in O3-1 compared to CF. O3-2 treatment significantly decreased starch and TNC in the fine roots of P. bournei, and significantly decreased polysaccharide, starch, WSC, and TNC in the fine roots of P. zhennan. Elevated O3 had no effects on leaf polysaccharide in both species, but O3-1 significantly increased polysaccharide in the fine roots of both species, and O3-1 significantly increased WSC in the leaves while decreased that in the fine roots of both species. These results suggested that elevated O3 levels have significant impacts on the carbon metabolism of both tree species in our study, with differential responses between tree species and among leaves and roots

    Characterization of hydrophilic and hydrophobic core-shell microcapsules prepared using a range of antisolvent approaches

    Get PDF
    This study describes three straightforward approaches to leveraging gel network-restricted antisolvent precipitation techniques as a means of preparing hydrophilic hydrophobic core-shell microparticles. Briefly, hydrophilic polysaccharides (sodium alginate (ALG), κ-carrageenan (CAR), and agar (AG)) were utilized to prepare microgel beads that were then immersed in zein solutions (70% ethanol aqueous solution, 70% urea aqueous solution, and zein in 70% acetic acid, respectively), thereby facilitating the controlled, slow antisolvent precipitation of the protein layer on the microbead surfaces and inducing hydrophilic hydrophobic core-shell structure formation. This technique can be readily applied to a range of gelling systems and can be tailored to target particle sizes and shell thicknesses. The resultant core-shell particles offer great promise for controlled delivery of fragrances, drugs, or other bioactive compounds in an application-specific fashion, and can be individually tailored based upon the selected input concentrations and preparation methods. Importantly, this technique is generalizable and can be extended to prepare diverse particles with a range of core-shell structures produced from a wide assortment of hydrophobic materials

    Calcium ion regulation of sodium alginate in pure buckwheat noodles shown by in vitro simulated digestion

    Get PDF
    The effects of calcium sodium alginate on quality and starch digestion of pure buckwheat noodles were investigated. The incorporation of calcium ions into noodles containing sodium alginate was found to reduce water absorption by the noodles during cooking, together with an increase of the turbidity. Calcium addition improved the noodle texture, as shown by the measurement of hardness, elasticity, adhesion, and chewability. In vitro simulations of digestion showed that calcium ion cross-linking with sodium alginate reduced glucose formation by approximately 23.3 mg/g. X-ray diffraction and Fourier transform infrared spectroscopy showed alterations in the crystal zone of the noodles induced by an alginate gel network, although no new chemical substances were generated. Noodles prepared by this exogenous method may be useful as functional foods for patients with diabetes

    Liquid-liquid biopolymers aqueous solution segregative phase separation in food: From fundamentals to applications - A review

    Get PDF
    As a result of the spontaneous movement of molecules, liquid-liquid biopolymer segregative phase separation takes place in an aqueous solution. The efficacy of this type of separation can be optimized under conditions where variables such as pH, temperature, and molecular concentrations have minimal impact on its dynamics. Recently, interest in the applications of biopolymers and their segregative phase separation-associated molecular stratification has increased, particularly in the food industry, where these methods permit the purification of specific particles and the embedding of microcapsules. The present review offers a comprehensive examination of the theoretical mechanisms that regulate the liquid−liquid biopolymers aqueous solution segregative phase separation, the factors that may exert an impact on this procedure, and the importance of this particular separation method in the context of food science. These discussion points also address existing difficulties and future possibilities related to the use of segregative phase separation in food applications. This highlights the potential for the design of novel functional foods and the enhancement of food properties

    Formation, influencing factors, and applications of internal channels in starch: A review

    Get PDF
    Starch, a natural polymer, has a complex internal structure. Some starches, such as corn and wheat starches, have well-developed surface pores and internal channels. These channel structures are considered crucial in connecting surface stomata and internal cavities and have adequate space for loading guest molecules. After processing or modification, the starch-containing channel structures can be used for food and drug encapsulation and delivery. This article reviews the formation and determination of starch internal channels, and the influence of different factors (such as starch species and processing conditions) on the channel structure. It also discusses relevant starch preparation methods (physical, chemical, enzymatic, and synergistic), and the encapsulation effect of starch containing internal channels on different substances. In addition, the role of internal channels in regulating the starch digestion rate and other aspects is also discussed here. This review highlights the significant multifunctional applications of starch with a channel structure

    Preparation and characterization of gliadin-based core-shell microcapsules by three antisolvent approaches

    Get PDF
    Gliadin, a versatile wheat-derived protein, has great potential in the creation of nanostructured delivery systems for encapsulating various hydrophobic bioactive substances. Despite gliadin's well-established potential in creating nanostructured delivery systems for hydrophobic substances, its utilization for encapsulating hydrophilic compounds remains a relatively unexplored domain. This study investigated the feasibility of preparing gliadin-based core-shell microcapsules using different antisolvent methods and assessed their controlled release capabilities for hydrophilic compounds. It employed three commonly used food polysaccharides, alginate, κ-carrageenan, and agar, as hydrophilic microbeads and selected thiamine and ethyl maltol as model compounds. The microcapsules were constructed by two steps: 1) The microbeads were prepared by a water-in-oil emulsion template under different gelling conditions; 2) The microbeads were dispersed into aqueous ethanol/urea/acetic acid gliadin solutions, during which the slow migration of water from inside the microbeads to the outer gliadin solution decreased the solubility of gliadin and promoted the deposition of gliadin onto the surface of the microbeads, finally leading to the formation of the core-shell structure. The resulting core-shell microcapsules exhibited adjustable particle sizes from 80.0 to 850.0 μm in diameter and shell thickness ranging from 8.0 to 30.0 μm. Moreover, the microcapsules exhibited controlled release behavior for hydrophilic compounds, with only 20.0% of thiamine being released after 90 min, and this release rate can be finely tuned by controlling the shell thickness. These gliadin-based core-shell microcapsules are considered as promising carriers for the controlled delivery of hydrophilic compounds

    Response of Soil Respiration to Soil Temperature and Moisture in a 50-Year-Old Oriental Arborvitae Plantation in China

    Get PDF
    China possesses large areas of plantation forests which take up great quantities of carbon. However, studies on soil respiration in these plantation forests are rather scarce and their soil carbon flux remains an uncertainty. In this study, we used an automatic chamber system to measure soil surface flux of a 50-year-old mature plantation of Platycladus orientalis at Jiufeng Mountain, Beijing, China. Mean daily soil respiration rates (Rs) ranged from 0.09 to 4.87 µmol CO2 m−2s−1, with the highest values observed in August and the lowest in the winter months. A logistic model gave the best fit to the relationship between hourly Rs and soil temperature (Ts), explaining 82% of the variation in Rs over the annual cycle. The annual total of soil respiration estimated from the logistic model was 645±5 g C m−2 year−1. The performance of the logistic model was poorest during periods of high soil temperature or low soil volumetric water content (VWC), which limits the model's ability to predict the seasonal dynamics of Rs. The logistic model will potentially overestimate Rs at high Ts and low VWC. Seasonally, Rs increased significantly and linearly with increasing VWC in May and July, in which VWC was low. In the months from August to November, inclusive, in which VWC was not limiting, Rs showed a positively exponential relationship with Ts. The seasonal sensitivity of soil respiration to Ts (Q10) ranged from 0.76 in May to 4.38 in October. It was suggested that soil temperature was the main determinant of soil respiration when soil water was not limiting

    Gender-Related Differences in the Dysfunctional Resting Networks of Migraine Suffers

    Get PDF
    BACKGROUND: Migraine shows gender-specific incidence and has a higher prevalence in females. However, little is known about gender-related differences in dysfunctional brain organization, which may account for gender-specific vulnerability and characteristics of migraine. In this study, we considered gender-related differences in the topological property of resting functional networks. METHODOLOGY/PRINCIPAL FINDINGS: Data was obtained from 38 migraine patients (18 males and 20 females) and 38 healthy subjects (18 males and 20 females). We used the graph theory analysis, which becomes a powerful tool in investigating complex brain networks on a whole brain scale and could describe functional interactions between brain regions. Using this approach, we compared the brain functional networks between these two groups, and several network properties were investigated, such as small-worldness, network resilience, nodal centrality, and interregional connections. In our findings, these network characters were all disrupted in patients suffering from chronic migraine. More importantly, these functional damages in the migraine-affected brain had a skewed balance between males and females. In female patients, brain functional networks showed worse resilience, more regions exhibited decreased nodal centrality, and more functional connections revealed abnormalities than in male patients. CONCLUSIONS: These results indicated that migraine may have an additional influence on females and lead to more dysfunctional organization in their resting functional networks
    • …
    corecore