89 research outputs found
Systematic pan-cancer analysis identifies gasdermin B as an immunological and prognostic biomarker for kidney renal clear cell carcinoma
Gasdermin (GSDM)-mediated cell lytic death plays an essential role in immunity and tumorigenesis. Despite the association of gasdermin B (GSDMB) with the tumorigenesis of various cancers, whether GSDMB functions as a prognostic biomarker in renal cell carcinoma remains poorly understood. Here, we explored the potential immunological functions and the prognostic value of GSDMB across multiple tumors with The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, including analyzing the relationship between GSDMB expression and prognosis, tumor–immune system interactions, immunomodulators, and immune cell infiltration of different tumors. Importantly, elevated expression of GSDMB is an essential factor for the poor prognosis of kidney renal clear cell carcinoma (KIRC) patients, suggesting that it might be helpful to predict a survival benefit from a clinical therapy regimen. Furthermore, GSDMB expression promoted the level of CD4+ T-cell infiltration of the tumors but is significantly negatively associated with immature dendritic cells (iDCs) in KIRC. Additionally, we identified TNFRSF25 and TNFSF14 as immunostimulators highly correlated with GSDMB expression. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses showed that GSDMB and its interacting proteins might affect tumor growth through the serine metabolism pathway. Our current results demonstrate a promising therapeutic strategy targeting GSDMB and provide new insights into GSDMB as an immunological and prognostic biomarker for KIRC
Distributed OSN Crawling System based on Ajax Simulation
AbstractIn the age of Web2.0, lots of online social networks (OSNs) like Facebook, Twitter, WeiBo become the most popular information transform platform, which catch more and more attention from Information Retrieval (IR). However, traditional web crawling System get into trouble because of the complicated OSN web pages, the rapid message exploding and the heavy using of Asynchronous JavaScript and XML(AJAX). We design and implement a distributed system based on Message Oriented Middleware (MOM) and Ajax simulation, which crawls 70 millions of Twitter detail items in one month. The data Acquisition shows that the crawling with Ajax simulation is able to get items loaded by Ajax without limitations, the distributed system based on MOM and Ajax simulation is able to crawl massive OSN data completely, quickly, frequently and unrestrictedly
A VLP-Based Vaccine Displaying HBHA and MTP Antigens of Mycobacterium tuberculosis Induces Protective Immune Responses in M. tuberculosis H37Ra Infected Mice
Heparin-binding hemagglutinin (HBHA) and M. tuberculosis pili (MTP) are important antigens on the surface of Mycobacterium tuberculosis. To display these antigens effectively, the fusion protein HBHA-MTP with a molecular weight of 20 kD (L20) was inserted into the receptor-binding hemagglutinin (HA) fragment of influenza virus and was expressed along with matrix protein M1 in Sf9 insect cells to generate influenza virus-like particles (LV20 in short). The results showed that the insertion of L20 into the envelope of the influenza virus did not affect the self-assembly and morphology of LV20 VLPs. The expression of L20 was successfully verified by transmission electron microscopy. Importantly, it did not interfere with the immunogenicity reactivity of LV20 VLPs. We demonstrated that LV20 combined with the adjuvant composed of DDA and Poly I: C (DP) elicited significantly higher antigen-specific antibodies and CD4+/CD8+ T cell responses than PBS and BCG vaccination in mice. It suggests that the insect cell expression system is an excellent protein production system, and LV20 VLPs could be a novel tuberculosis vaccine candidate for further evaluation
Structural insights into catalytical capability for CPT11 hydrolysis and substrate specificity of a novel marine microbial carboxylesterase, E93
IntroductionCPT11 (Irinotecan; 7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxycamptothecin) is an important camptothecin-based broad-spectrum anticancer prodrug. The activation of its warhead, SN38 (7-ethyl-10-hydroxycamptothecin), requires hydrolysis by carboxylesterases. NPC (7-ethyl-10-[4-(1-piperidino)-1-amino] carbonyloxycamptothecin) is a metabolic derivative of CPT11 and is difficult to be hydrolyzed by human carboxylesterase. Microbial carboxylesterase with capability on both CPT11 and NPC hydrolysis is rarely reported. A marine microbial carboxylesterase, E93, was identified to hydrolyze both substrates in this study. This enzyme was an appropriate subject for uncovering the catalytic mechanism of carboxylesterases to CPT11 and NPC hydrolysis.MethodsX-ray diffraction method was applied to obtain high-resolution structure of E93. Molecular docking was adopted to analyze the interaction of E93 with p-NP (p-nitrophenyl), CPT11, and NPC substrates. Mutagenesis and enzymatic assay were adopted to verify the binding pattern of substrates.ResultsThree core regions (Region A, B, and C) of the catalytic pocket were identified and their functions on substrates specificity were validated via mutagenesis assays. The Region A was involved in the binding with the alcohol group of all tested substrates. The size and hydrophobicity of the region determined the binding affinity. The Region B accommodated the acyl group of p-NP and CPT11 substrates. The polarity of this region determined the catalytic preference to both substrates. The Region C specifically accommodated the acyl group of NPC. The interaction from the acidic residue, E428, contributed to the binding of E93 with NPC.DiscussionThe study analyzed both unique and conserved structures of the pocket in E93, for the first time demonstrating the discrepancy of substrate-enzyme interaction between CPT11 and NPC. It also expanded the knowledge about the substrate specificity and potential application of microbial Family VII carboxylesterases
Structural Study of the RIPoptosome Core Reveals a Helical Assembly for Kinase Recruitment
Receptor interaction protein kinase 1 (RIP1) is a molecular cell-fate switch. RIP1, together with Fas-associated protein with death domain (FADD) and caspase-8, forms the RIPoptosome that activates apoptosis. RIP1 also associates with RIP3 to form the necrosome that triggers necroptosis. The RIPoptosome assembles through interactions between the death domains (DDs) of RIP1 and FADD and between death effector domains (DEDs) of FADD and caspase-8. In this study, we analyzed the overall structure of the RIP1 DD/FADD DD complex, the core of the RIPoptosome, by negative-stain electron microscopy and modeling. The results show that RIP1 DD and FADD DD form a stable complex in vitro similar to the previously described Fas DD/FADD DD complex, suggesting that the RIPoptosome and the Fas death-inducing signaling complex share a common assembly mechanism. Both complexes adopt a helical conformation that requires type I, II, and III interactions between the death domains
Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA
Background
Very few proteins encoded by the presumed non-coding RNA transcripts have been identified. Their cellular functions remain largely unknown. This study identifies the tumor-suppressor function of a novel microprotein encoded by the precursor of miR-34a. It consists of 133 amino acid residues, thereby named as miPEP133 (pri-microRNA encoded peptide 133).
Methods
We overexpressed miPEP133 in nasopharyngeal carcinoma (NPC), ovarian cancer and cervical cancer cell lines to determine its effects on cell growth, apoptosis, migration, or invasion. Its impact on tumor growth was evaluated in a xenograft NPC model. Its prognostic value was analyzed using NPC clinical samples. We also conducted western blot, immunoprecipitation, mass spectrometry, confocal microscopy and flow cytometry to determine the underlying mechanisms of miPEP133 function and regulation.
Results
miPEP133 was expressed in normal human colon, stomach, ovary, uterus and pharynx. It was downregulated in cancer cell lines and tumors. miPEP133 overexpression induced apoptosis in cancer cells and inhibited their migration and invasion. miPEP133 inhibited tumor growth in vivo. Low miPEP133 expression was an unfavorable prognostic marker associated with advanced metastatic NPC. Wild-type p53 but not mutant p53 induced miPEP133 expression. miPEP133 enhanced p53 transcriptional activation and miR-34a expression. miPEP133 localized in the mitochondria to interact with mitochondrial heat shock protein 70kD (HSPA9) and prevent HSPA9 from interacting with its binding partners, leading to the decrease of mitochondrial membrane potential and mitochondrial mass.
Conclusion
miPEP133 is a tumor suppressor localized in the mitochondria. It is a potential prognostic marker and therapeutic target for multiple types of cancers
Human Impact on Vegetation Dynamics around Lhasa, Southern Tibetan Plateau, China
Human impact plays an increasing role on vegetation change even on the Tibetan Plateau, an area that is commonly regarded as an ideal place to study climate change. We evaluate the nature and extent of human impact on vegetation dynamics by the comparison of two areas: the relative highly populated Lhasa area and a nearby less populated Lhari County. Our results indicate that human impact has mainly decreased vegetation greenness within 20 km of the urban area and major constructions during 1999–2013. However, the impact of human activities in a relatively large area is still minor and does not reverse the major trends of vegetation dynamics caused by the warming temperature in recent decades. It seems that the impact of anthropogenic factors on the normalized difference vegetation index (NDVI) trend is more apparent in the Lhasa area than in Lhari County. The major anthropogenic driving factor for vegetation browning in the Lhasa area is livestock number, while the factors, including the number of rural laborers and artificial forest areas, are positively correlated with the annual NDVI increase. The similar relationship between the annual NDVI and driving factors appeared in Lhari County, except for artificial forest areas. The warming temperature and the change in precipitation played dominant roles on vegetation greening in Lhari County than that in the Lhasa area
Challenges of Physical Layer Security in a Satellite-Terrestrial Network
Integrated satellite-terrestrial networks (ISTNs) are one of the new research directions for future 5G networks. Satellite coverage enables 5G communication throughout most of the world. However, the security concerns associated with the inherent broadcast nature of satellites are rarely considered. As an emerging security paradigm in 5G terrestrial communication, physical layer security (PLS) could have potential applications in an ISTN. This article describes the challenges of applying PLS to an ISTN, including correlated channels, co-channel interference, multiuserand multi-eavesdropper scenarios, and reliability concerns. The impacts of these challenges on the security performance of an ISTN and the corresponding solutions are analyzed for further comparison. Finally, we conclude the article by predicting future trends of PLS in an ISTN
Analysis and Suppression of the Cross-Axis Coupling Effect for Dual-Beam SERF Atomic Magnetometer
Spin-exchange relaxation-free (SERF) atomic magnetometers operated under a near-zero magnetic field are used for vector magnetic field measurements with high sensitivity. Previously, the cross-axis coupling error evoked by a nonzero background magnetic field has been verified to be adverse in modulated single-beam magnetometers. Here, in a dual-beam unmodulated SERF magnetometer, we propose a somewhat different solution model for the cross-axis coupling effect where the field of interest couples with the interference field. Considering two cases where the transverse or longitudinal background field exists, the cross-axis coupling effect dependence on multiple factors is investigated here based on the dynamic response under a background magnetic field within ±5 nT. The theoretical and experimental investigation suggests that it has an adverse impact on the output response amplitude and phase and tilts the sensitive axis by several degrees, causing a measurement error on the dual-beam magnetometer. To suppress this effect, the background magnetic field is compensated through the PI closed-loop control. The coupling effect is effectively suppressed by 1.5 times at the 10–40 Hz low-frequency band and the sensitivity reaches 2.4 fT/Hz1/2
- …