27 research outputs found
Effect of transcranial direct current stimulation for patients with disorders of consciousness: A systematic review and meta-analysis
IntroductionTranscranial direct current stimulation (tDCS) could potentially facilitate consciousness improvement in patients with disorders of consciousness (DOC). The aim of this study was to investigate the therapeutic efficacy of tDCS on consciousness recovery for patients with DOC.MethodsEight databases were systematically searched from their inception to June 2022. Quality of included studies were assessed using PEDro score and Cochrane’s risk of bias assessment. All statistical analyses were performed using RevMan software. Seventeen studies with 618 patients were identified eligible for this study, and fifteen studies with sufficient data were pooled in the meta-analysis.ResultsThe results of meta-analysis showed a significant effect on increasing GCS scores (MD = 1.73; 95% CI, 1.28–2.18; P < 0.01) and CRS-R scores (MD = 1.28; 95% CI = 0.56–2.00; P < 0.01) in favor of the real stimulation group as compared to sham. The results of subgroup analysis demonstrated that only more than 20 sessions of stimulation could significantly enhance the improvement of GCS scores and the CRS-R scores. Moreover, the effect of tDCS on CRS-R score improvement was predominant in patients with minimal conscious state (MCS) (MD = 1.84; 95% CI = 0.74–2.93; P < 0.01).ConclusionAnodal tDCS with sufficient stimulation doses appears to be an effective approach for patients with MCS, in terms of CRS-R scores.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022336958
MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis
MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of
multiple sclerosis
Changsheng Du1,5, Chang Liu1,5, Jiuhong Kang1,2, Guixian Zhao3, Zhiqiang Ye4, Shichao Huang1, Zhenxin Li3, Zhiying Wu3 & Gang Pei1,2
Interleukin 17 (IL-17)-producing T helper cells (TH-17 cells) are increasingly recognized as key participants in various autoimmune diseases, including multiple sclerosis. Although sets of transcription factors and cytokines are known to regulate TH-17 differentiation, the role of noncoding RNA is poorly understood. Here we identify a TH-17 cell–associated microRNA,
miR-326, whose expression was highly correlated with disease severity in patients with multiple sclerosis and mice with experimental autoimmune encephalomyelitis (EAE). In vivo silencing of miR-326 resulted in fewer TH-17 cells and mild EAE, and its overexpression led to more TH-17 cells and severe EAE. We also found that miR-326 promoted TH-17 differentiation by targeting Ets-1, a negative regulator of TH-17 differentiation. Our data show a critical role for microRNA in TH-17 differentiation and the pathogenesis of multiple sclerosis
Micro-damage model of gas-bearing coal under load and instability identification criteria
The distribution of pores and skeletons within coal reservoirs significantly affects the migration of gases and the occurrence of gas dynamic disasters. To further explore the micro-damage mechanisms in gas-containing coal, a detailed study of the micro-damage process in gas-containing coal was conducted. Atomic force microscopy was employed to conduct in-situ tests on the surfaces of protruding and non-protruding coal samples before and after loading. The results indicate that the surface structure of the coal samples changes after loading, with a reduction in closed pore diameter, damage to some pores, and a tendency for connectivity between adjacent closed pores. Before loading, the pores in coal samples exhibit irregular distribution, while after loading, pore connectivity increases, and the number of open pore throats slightly increases. Loading leads to a reduction in the modulus of coal skeleton in protruding coal samples due to pore connectivity, while non-protruding coal samples experience internal structure compaction, resulting in a slight increase in elastic modulus due to their higher strength. Micro-damage types and concepts in coal were defined, and the stress distribution characteristics around coal pores and the coal skeleton were analyzed, revealing the micro-damage mechanisms in gas-containing coal under different conditions. Simultaneously, the factors influencing the closed-cell micro-gas explosion were discussed. The stress at the end of a slender elliptical hole is greater along the hole wall, making it more susceptible to closed-cell micro-gas explosions. Two forms of occurrence of open-pore micro-damage were described, revealing the constraining effect of the "bottleneck effect" on micro-damage. Inherent fractures were identified as the weak link in the coal skeleton, and the evolution of their rupture was analyzed. Utilizing theories such as linear elastic fracture mechanics, elastic-plastic mechanics, and permeation mechanics, criteria for detecting pore damage and coal instability under stress disturbances were established. The micro-damage characteristics of gas-containing coal and the mechanisms inducing coal and gas outbursts were summarized, and the research direction of coal and gas outburst was prospected
Study of ZnS Nanostructures Based Electrochemical and Photoelectrochemical Biosensors for Uric Acid Detection
Uric acid (UA) is a kind of purine metabolism product and important in clinical diagnosis. In this work, we present a study of ZnS nanostructures-based electrochemical and photoelectrochemical biosensors for UA detection. Through a simple hydrothermal method and varying the ratio of reaction solvents, we obtained ZnS nanomaterials of one-dimensional to three-dimensional morphologies and they were characterized using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). To fabricate the UA biosensor and study the effect of material morphology on its performance, ZnS nanomaterials were deposited on indium tin oxide (ITO) conducting glass and then coated with uricase by physical absorption. Three kinds of working electrodes were characterized by cyclic voltammetry method. The effect of material morphology on performance of UA detection was investigated via amperometric response based electrochemical method based on enzymatic reaction. The ZnS urchin-like nanostructures electrode shows better sensitivity compared with those made of nanoparticles and nanoflakes because of its high surface-area-to-volume ratio. The photoelectrochemical method for detection of UA was also studied. The sensitivity was increased 5 times after irradiation of 300 nm UV light. These results indicate that ZnS nanostructures are good candidate materials for developing enzyme-based UA biosensors
The stability of memristive multidirectional associative memory neural networks with time-varying delays in the leakage terms via sampled-data control.
In this paper, we propose a new model of memristive multidirectional associative memory neural networks, which concludes the time-varying delays in leakage terms via sampled-data control. We use the input delay method to turn the sampling system into a continuous time-delaying system. Then we analyze the exponential stability and asymptotic stability of the equilibrium points for this model. By constructing a suitable Lyapunov function, using the Lyapunov stability theorem and some inequality techniques, some sufficient criteria for ensuring the stability of equilibrium points are obtained. Finally, numerical examples are given to demonstrate the effectiveness of our results
Neonatal Plasma Exosomes Contribute to Endothelial Cell-Mediated Angiogenesis and Cardiac Repair after Acute Myocardial Infarction
Acute myocardial infarction (AMI) accompanied by cardiac remodeling still lacks effective treatment to date. Accumulated evidences suggest that exosomes from various sources play a cardioprotective and regenerative role in heart repair, but their effects and mechanisms remain intricate. Here, we found that intramyocardial delivery of plasma exosomes from neonatal mice (npEXO) could help to repair the adult heart in structure and function after AMI. In-depth proteome and single-cell transcriptome analyses suggested that npEXO ligands were majorly received by cardiac endothelial cells (ECs), and npEXO-mediated angiogenesis might serve as a pivotal reason to ameliorate the infarcted adult heart. We then innovatively constructed systematical communication networks among exosomal ligands and cardiac ECs and the final 48 ligand–receptor pairs contained 28 npEXO ligands (including the angiogenic factors, Clu and Hspg2), which mainly mediated the pro-angiogenic effect of npEXO by recognizing five cardiac EC receptors (Kdr, Scarb1, Cd36, etc.). Together, the proposed ligand–receptor network in our study might provide inspiration for rebuilding the vascular network and cardiac regeneration post-MI