4 research outputs found

    Über die Selbstorganisation einer hierarchischen Gedächtnisstruktur für kompositionelle Objektrepräsentation im visuellen Kortex

    Get PDF
    At present, there is a huge lag between the artificial and the biological information processing systems in terms of their capability to learn. This lag could be certainly reduced by gaining more insight into the higher functions of the brain like learning and memory. For instance, primate visual cortex is thought to provide the long-term memory for the visual objects acquired by experience. The visual cortex handles effortlessly arbitrary complex objects by decomposing them rapidly into constituent components of much lower complexity along hierarchically organized visual pathways. How this processing architecture self-organizes into a memory domain that employs such compositional object representation by learning from experience remains to a large extent a riddle. The study presented here approaches this question by proposing a functional model of a self-organizing hierarchical memory network. The model is based on hypothetical neuronal mechanisms involved in cortical processing and adaptation. The network architecture comprises two consecutive layers of distributed, recurrently interconnected modules. Each module is identified with a localized cortical cluster of fine-scale excitatory subnetworks. A single module performs competitive unsupervised learning on the incoming afferent signals to form a suitable representation of the locally accessible input space. The network employs an operating scheme where ongoing processing is made of discrete successive fragments termed decision cycles, presumably identifiable with the fast gamma rhythms observed in the cortex. The cycles are synchronized across the distributed modules that produce highly sparse activity within each cycle by instantiating a local winner-take-all-like operation. Equipped with adaptive mechanisms of bidirectional synaptic plasticity and homeostatic activity regulation, the network is exposed to natural face images of different persons. The images are presented incrementally one per cycle to the lower network layer as a set of Gabor filter responses extracted from local facial landmarks. The images are presented without any person identity labels. In the course of unsupervised learning, the network creates simultaneously vocabularies of reusable local face appearance elements, captures relations between the elements by linking associatively those parts that encode the same face identity, develops the higher-order identity symbols for the memorized compositions and projects this information back onto the vocabularies in generative manner. This learning corresponds to the simultaneous formation of bottom-up, lateral and top-down synaptic connectivity within and between the network layers. In the mature connectivity state, the network holds thus full compositional description of the experienced faces in form of sparse memory traces that reside in the feed-forward and recurrent connectivity. Due to the generative nature of the established representation, the network is able to recreate the full compositional description of a memorized face in terms of all its constituent parts given only its higher-order identity symbol or a subset of its parts. In the test phase, the network successfully proves its ability to recognize identity and gender of the persons from alternative face views not shown before. An intriguing feature of the emerging memory network is its ability to self-generate activity spontaneously in absence of the external stimuli. In this sleep-like off-line mode, the network shows a self-sustaining replay of the memory content formed during the previous learning. Remarkably, the recognition performance is tremendously boosted after this off-line memory reprocessing. The performance boost is articulated stronger on those face views that deviate more from the original view shown during the learning. This indicates that the off-line memory reprocessing during the sleep-like state specifically improves the generalization capability of the memory network. The positive effect turns out to be surprisingly independent of synapse-specific plasticity, relying completely on the synapse-unspecific, homeostatic activity regulation across the memory network. The developed network demonstrates thus functionality not shown by any previous neuronal modeling approach. It forms and maintains a memory domain for compositional, generative object representation in unsupervised manner through experience with natural visual images, using both on- ("wake") and off-line ("sleep") learning regimes. This functionality offers a promising departure point for further studies, aiming for deeper insight into the learning mechanisms employed by the brain and their consequent implementation in the artificial adaptive systems for solving complex tasks not tractable so far.Gegenwärtig besteht immer noch ein enormer Abstand zwischen der Lernfähigkeit von künstlichen und biologischen Informationsverarbeitungssystemen. Dieser Abstand ließe sich durch eine bessere Einsicht in die höheren Funktionen des Gehirns wie Lernen und Gedächtnis verringern. Im visuellen Kortex etwa werden die Objekte innerhalb kürzester Zeit entlang der hierarchischen Verarbeitungspfade in ihre Bestandteile zerlegt und so durch eine Komposition von Elementen niedrigerer Komplexität dargestellt. Bereits bekannte Objekte werden so aus dem Langzeitgedächtnis abgerufen und wiedererkannt. Wie eine derartige kompositionell-hierarchische Gedächtnisstruktur durch die visuelle Erfahrung zustande kommen kann, ist noch weitgehend ungeklärt. Um dieser Frage nachzugehen, wird hier ein funktionelles Modell eines lernfähigen rekurrenten neuronalen Netzwerkes vorgestellt. Im Netzwerk werden neuronale Mechanismen implementiert, die der kortikalen Verarbeitung und Plastizität zugrunde liegen. Die hierarchische Architektur des Netzwerkes besteht aus zwei nacheinander geschalteten Schichten, die jede eine Anzahl von verteilten, rekurrent vernetzten Modulen beherbergen. Ein Modul umfasst dabei mehrere funktionell separate Subnetzwerke. Jedes solches Modul ist imstande, aus den eintreffenden Signalen eine geeignete Repräsentation für den lokalen Eingaberaum unüberwacht zu lernen. Die fortlaufende Verarbeitung im Netzwerk setzt sich zusammen aus diskreten Fragmenten, genannt Entscheidungszyklen, die man mit den schnellen kortikalen Rhythmen im gamma-Frequenzbereich in Verbindung setzen kann. Die Zyklen sind synchronisiert zwischen den verteilten Modulen. Innerhalb eines Zyklus wird eine lokal umgrenzte winner-take-all-ähnliche Operation in Modulen durchgeführt. Die Kompetitionsstärke wächst im Laufe des Zyklus an. Diese Operation aktiviert in Abhängigkeit von den Eingabesignalen eine sehr kleine Anzahl von Einheiten und verstärkt sie auf Kosten der anderen, um den dargebotenen Reiz in der Netzwerkaktivität abzubilden. Ausgestattet mit adaptiven Mechanismen der bidirektionalen synaptischen Plastizität und der homöostatischen Aktivitätsregulierung, erhält das Netzwerk natürliche Gesichtsbilder von verschiedenen Personen dargeboten. Die Bilder werden der unteren Netzwerkschicht, je ein Bild pro Zyklus, als Ansammlung von Gaborfilterantworten aus lokalen Gesichtslandmarken zugeführt, ohne Information über die Personenidentität zur Verfügung zu stellen. Im Laufe der unüberwachten Lernprozedur formt das Netzwerk die Verbindungsstruktur derart, dass die Gesichter aller dargebotenen Personen im Netzwerk in Form von dünn besiedelten Gedächtnisspuren abgelegt werden. Hierzu werden gleichzeitig vorwärtsgerichtete (bottom-up) und rekurrente (lateral, top-down) synaptische Verbindungen innerhalb und zwischen den Schichten gelernt. Im reifen Verbindungszustand werden infolge dieses Lernens die einzelnen Gesichter als Komposition ihrer Bestandteile auf generative Art gespeichert. Dank der generativen Art der gelernten Struktur reichen schon allein das höhere Identitätssymbol oder eine kleine Teilmenge von zugehörigen Gesichtselementen, um alle Bestandteile der gespeicherten Gesichter aus dem Gedächtnis abzurufen. In der Testphase kann das Netzwerk erfolgreich sowohl die Identität als auch das Geschlecht von Personen aus vorher nicht gezeigten Gesichtsansichten erkennen. Eine bemerkenswerte Eigenschaft der entstandenen Gedächtnisarchitektur ist ihre Fähigkeit, ohne Darbietung von externen Stimuli spontan Aktivitätsmuster zu generieren und die im Gedächtnis abgelegten Inhalte in diesem schlafähnlichen "off-line" Regime wiederzugeben. Interessanterweise ergibt sich aus der Schlafphase ein direkter Vorteil für die Gedächtnisfunktion. Dieser Vorteil macht sich durch eine drastisch verbesserte Erkennungsrate nach der Schlafphase bemerkbar, wenn das Netwerk mit den zuvor nicht dargebotenen Ansichten von den bereits bekannten Personen konfrontiert wird. Die Leistungsverbesserung nach der Schlafphase ist umso deutlicher, je stärker die Alternativansichten vom Original abweichen. Dieser positive Effekt ist zudem komplett unabhängig von der synapsenspezifischen Plastizität und kann allein durch die synapsenunspezifische, homöostatische Regulation der Aktivität im Netzwerk erklärt werden. Das entwickelte Netzwerk demonstriert so eine im Bereich der neuronalen Modellierung bisher nicht gezeigte Funktionalität. Es kann unüberwacht eine Gedächtnisdomäne für kompositionelle, generative Objektrepräsentation durch die Erfahrung mit natürlichen Bildern sowohl im reizgetriebenen, wachähnlichen Zustand als auch im reizabgekoppelten, schlafähnlichen Zustand formen und verwalten. Diese Funktionalität bietet einen vielversprechenden Ausgangspunkt für weitere Studien, die die neuronalen Lernmechanismen des Gehirns ins Visier nehmen und letztendlich deren konsequente Umsetzung in technischen, adaptiven Systemen anstreben

    Activity-dependent bidirectional plasticity and homeostasis regulation governing structure formation in a model of layered visual memory

    Get PDF
    Poster presentation: Our work deals with the self-organization [1] of a memory structure that includes multiple hierarchical levels with massive recurrent communication within and between them. Such structure has to provide a representational basis for the relevant objects to be stored and recalled in a rapid and efficient way. Assuming that the object patterns consist of many spatially distributed local features, a problem of parts-based learning is posed. We speculate on the neural mechanisms governing the process of the structure formation and demonstrate their functionality on the task of human face recognition. The model we propose is based on two consecutive layers of distributed cortical modules, which in turn contain subunits receiving common afferents and bounded by common lateral inhibition (Figure 1). In the initial state, the connectivity between and within the layers is homogeneous, all types of synapses – bottom-up, lateral and top-down – being plastic. During the iterative learning, the lower layer of the system is exposed to the Gabor filter banks extracted from local points on the face images. Facing an unsupervised learning problem, the system is able to develop synaptic structure capturing local features and their relations on the lower level, as well as the global identity of the person at the higher level of processing, improving gradually its recognition performance with learning time. ..

    A correspondence-based neural mechanism for position invariant feature processing

    Get PDF
    Poster presentation: Introduction We here focus on constructing a hierarchical neural system for position-invariant recognition, which is one of the most fundamental invariant recognition achieved in visual processing [1,2]. The invariant recognition have been hypothesized to be done by matching a sensory image of a particular object stimulated on the retina to the most suitable representation stored in memory of the higher visual cortical area. Here arises a general problem: In such a visual processing, the position of the object image on the retina must be initially uncertain. Furthermore, the retinal activities possessing sensory information are being far from the ones in the higher area with a loss of the sensory object information. Nevertheless, with such recognition ambiguity, the particular object can effortlessly and easily be recognized. Our aim in this work is an attempt to resolve such a general recognition problem. ..

    A global decision-making model via synchronization in macrocolumn units

    Get PDF
    Poster presentation: Introduction We here address the problem of integrating information about multiple objects and their positions on the visual scene. A primate visual system has little difficulty in rapidly achieving integration, given only a few objects. Unfortunately, computer vision still has great difficultly achieving comparable performance. It has been hypothesized that temporal binding or temporal separation could serve as a crucial mechanism to deal with information about objects and their positions in parallel to each other. Elaborating on this idea, we propose a neurally plausible mechanism for reaching local decision-making for "what" and "where" information to the global multi-object recognition. ..
    corecore