3 research outputs found

    Causes of Exocrine Pancreatic Insufficiency Other Than Chronic Pancreatitis

    No full text
    Exocrine pancreatic insufficiency (EPI), an important cause of maldigestion and malnutrition, results from primary pancreatic disease or is secondary to impaired exocrine pancreatic function. Although chronic pancreatitis is the most common cause of EPI, several additional causes exist. These include pancreatic tumors, pancreatic resection procedures, and cystic fibrosis. Other diseases and conditions, such as diabetes mellitus, celiac disease, inflammatory bowel disease, and advanced patient age, have also been shown to be associated with EPI, but the exact etiology of EPI has not been clearly elucidated in these cases. The causes of EPI can be divided into loss of pancreatic parenchyma, inhibition or inactivation of pancreatic secretion, and postcibal pancreatic asynchrony. Pancreatic enzyme replacement therapy (PERT) is indicated for the conditions described above presenting with clinically clear steatorrhea, weight loss, or symptoms related to maldigestion and malabsorption. This review summarizes the current literature concerning those etiologies of EPI less common than chronic pancreatitis, the pathophysiology of the mechanisms of EPI associated with each diagnosis, and treatment recommendations

    The Use of Confocal Laser Endomicroscopy in Diagnosing Barrett’s Esophagus and Esophageal Adenocarcinoma

    No full text
    Confocal laser endomicroscopy (CLE) is a diagnostic technique that enables real-time microscopic imaging during microscopic examination and evaluation of epithelial structures with 1000-fold magnification. CLE can be used in the diagnosis of various pathologies, in pneumology, and in urology, and it is very widely utilized in gastroenterology, most importantly in the diagnosis of Barrett’s esophagus (BE), esophageal adenocarcinoma (EAC), biliary strictures, and cystic pancreatic lesions. A literature search was made in MEDLINE/PubMed and Google Scholar databases while focusing on diagnostics using CLE of BE and EAC. We then examined randomized and observational studies, systematic reviews, and meta-analyses relating to the utilization of CLE in BE and EAC diagnostics. Here, we discuss whether CLE can be a suitable diagnostic method for surveillance of BE. Even though many studies have proven that CLE increases diagnostic accuracy in detecting neoplastic transformation of BE, CLE is still not used as a standard diagnostic tool in BE surveillance due to a deficiency of scientific evidence. More studies and data are needed if CLE is to find a place as a new technique in BE surveillance

    Phospholipid profiling enables to discriminate tumor- and non-tumor-derived human colon epithelial cells: Phospholipidome similarities and differences in colon cancer cell lines and in patient-derived cell samples.

    No full text
    Identification of changes of phospholipid (PL) composition occurring during colorectal cancer (CRC) development may help us to better understand their roles in CRC cells. Here, we used LC-MS/MS-based PL profiling of cell lines derived from normal colon mucosa, or isolated at distinct stages of CRC development, in order to study alterations of PL species potentially linked with cell transformation. We found that a detailed evaluation of phosphatidylinositol (PI) and phosphatidylserine (PS) classes allowed us to cluster the studied epithelial cell lines according to their origin: i) cells originally derived from normal colon tissue (NCM460, FHC); ii) cell lines derived from colon adenoma or less advanced differentiating adenocarcinoma cells (AA/C1, HT-29); or, iii) cells obtained by in vitro transformation of adenoma cells and advanced colon adenocarcinoma cells (HCT-116, AA/C1/SB10, SW480, SW620). Although we tentatively identified several PS and PI species contributing to cell line clustering, full PI and PS profiles appeared to be a key to the successful cell line discrimination. In parallel, we compared PL composition of primary epithelial (EpCAM-positive) cells, isolated from tumor and adjacent non-tumor tissues of colon cancer patients, with PL profiles of cell lines derived from normal colon mucosa (NCM460) and from colon adenocarcinoma (HCT-116, SW480) cells, respectively. In general, higher total levels of all PL classes were observed in tumor cells. The overall PL profiles of the cell lines, when compared with the respective patient-derived cells, exhibited similarities. Nevertheless, there were also some notable differences in levels of individual PL species. This indicated that epithelial cell lines, derived either from normal colon tissue or from CRC cells, could be employed as models for functional lipidomic analyses of colon cells, albeit with some caution. The biological significance of the observed PL deregulation, or their potential links with specific CRC stages, deserve further investigation
    corecore