3 research outputs found

    Modular Architecture for Intelligent Aerial Manipulators

    No full text

    A Deep Multi-Task Learning Approach for Bioelectrical Signal Analysis

    No full text
    Deep learning is a promising technique for bioelectrical signal analysis, as it can automatically discover hidden features from raw data without substantial domain knowledge. However, training a deep neural network requires a vast amount of labeled samples. Additionally, a well-trained model may be sensitive to the study object, and its performance may deteriorate sharply when transferred to other study objects. We propose a deep multi-task learning approach for bioelectrical signal analysis to address these issues. Explicitly, we define two distinct scenarios, the consistent source-target scenario and the inconsistent source-target scenario based on the motivation and purpose of the tasks. For each scenario, we present methods to decompose the original task and dataset into multiple subtasks and sub-datasets. Correspondingly, we design the generic deep parameter-sharing neural networks to solve the multi-task learning problem and illustrate the details of implementation with one-dimension convolutional neural networks (1D CNN), vanilla recurrent neural networks (RNN), recurrent neural networks with long short-term memory units (LSTM), and recurrent neural networks with gated recurrent units (GRU). In these two scenarios, we conducted extensive experiments on four electrocardiogram (ECG) databases. The results demonstrate the benefits of our approach, showing that our proposed method can improve the accuracy of ECG data analysis (up to 5.2%) in the MIT-BIH arrhythmia database

    Robust Multiagent Reinforcement Learning for UAV Systems: Countering Byzantine Attacks

    No full text
    Multiple unmanned aerial vehicle (multi-UAV) systems have gained significant attention in applications, such as aerial surveillance and search and rescue missions. With the recent development of state-of-the-art multiagent reinforcement learning (MARL) algorithms, it is possible to train multi-UAV systems in collaborative and competitive environments. However, the inherent vulnerabilities of multiagent systems pose significant privacy and security risks when deploying general and conventional MARL algorithms. The presence of even a single Byzantine adversary within the system can severely degrade the learning performance of UAV agents. This work proposes a Byzantine-resilient MARL algorithm that leverages a combination of geometric median consensus and a robust state update model to mitigate, or even eliminate, the influence of Byzantine attacks. To validate its effectiveness and feasibility, the authors include a multi-UAV threat model, provide a guarantee of robustness, and investigate key attack parameters for multiple UAV navigation scenarios. Results from the experiments show that the average rewards during a Byzantine attack increased by up to 60% for the cooperative navigation scenario compared with conventional MARL techniques. The learning rewards generated by the baseline algorithms could not converge during training under these attacks, while the proposed method effectively converged to an optimal solution, proving its viability and correctness
    corecore