248 research outputs found

    Factors influencing the dissolved iron input by river water to the open ocean

    Get PDF
    International audienceThe influence of natural metal chelators on the bio-available iron input to the ocean by river water was studied. Ferrous and ferric ions present as suspended colloidal particles maintaining the semblance of a dissolved load are coagulated and settled as their freshwater carrier is mixed with seawater at the continental boundary. However, we might argue that different iron-binding colloids become sequentially destabilized in meeting progressively increasing salinities. By use of a 59Fe tracer method, the partitioning of the iron load from the suspended and dissolved mobile fraction to storage in the sediments was measured with high accuracy in mixtures of natural river water with artificial sea water. The results show a characteristic sequence of sedimentation. Various colloids of different stability are removed from a water of increasing salinity, such as it is the case in the transition from a river water to the open sea. However, the iron transport capacities of the investigated river waters differed greatly. A mountainous river in the Austrian Alps would add only about 5% of its dissolved Fe load, that is about 2.0 µg L-1 Fe, to coastal waters. A small tributary draining a sphagnum peat-bog, which acts as a source of refractory low-molecular-weight fulvic acids to the river water, would add approximately 20% of its original Fe load, that is up to 480 µg L-1 Fe to the ocean's bio-available iron pool. This points to a natural mechanism of ocean iron fertilization by terrigenous fulvic-iron complexes originating from weathering processes occurring in the soils upstream

    Trace element accumulation and human health risk assessment of Labeo capensis (Smith, 1841) from the Vaal Dam reservoir, South Africa

    Get PDF
    This paper aimed to determine the trace element concentrations within water, sediment and tissues of the Orange River mudfish Labeo capensis (Smith, 1841) collected from the Vaal Dam reservoir, and to assess potential risks associated with the consumption of L. capensis muscle tissue. The study was undertaken in March 2013; 22 L. capensis were collected with the aid of gill nets. Water and sediment samples were collected on site, and additional water analysis data for the sampling period were  received from Rand Water Analytical Facility in Vereeniging. Analysis of water revealed trace elements were present at trace levels. The comparison of trace element concentrations between the water, sediment and fish tissues revealed that the sediment contains the highest concentrations, followed by fish tissues and water. This trend exists as a result of the underlying geology of the Vaal Dam, the physiological and biological  characteristics of L. capensis, and the physicochemical state of the water. The risk assessment performed on the muscle tissue revealed that As and Se had total hazard quotient (THQ) values greater than one, and that the levels of As and Se were above the safety threshold values for human consumption.Keywords: Vaal Dam, Labeo capensis, trace element accumulation, bioaccumulation, health risks, target health quotien

    Detection of fixed points in spatiotemporal signals by clustering method

    Full text link
    We present a method to determine fixed points in spatiotemporal signals. A 144-dimensioanl simulated signal, similar to a Kueppers-Lortz instability, is analyzed and its fixed points are reconstructed.Comment: 3 pages, 3 figure

    The Importance of Cerebellar Connectivity on Simulated Brain Dynamics

    Get PDF
    The brain shows a complex multiscale organization that prevents a direct understanding of how structure, function and dynamics are correlated. To date, advances in neural modeling offer a unique opportunity for simulating global brain dynamics by embedding empirical data on different scales in a mathematical framework. The Virtual Brain (TVB) is an advanced data-driven model allowing to simulate brain dynamics starting from individual subjects’ structural and functional connectivity obtained, for example, from magnetic resonance imaging (MRI). The use of TVB has been limited so far to cerebral connectivity but here, for the first time, we have introduced cerebellar nodes and interconnecting tracts to demonstrate the impact of cerebro-cerebellar loops on brain dynamics. Indeed, the matching between the empirical and simulated functional connectome was significantly improved when including the cerebro-cerebellar loops. This positive result should be considered as a first step, since issues remain open about the best strategy to reconstruct effective structural connectivity and the nature of the neural mass or mean-field models generating local activity in the nodes. For example, signal processing is known to differ remarkably between cortical and cerebellar microcircuits. Tackling these challenges is expected to further improve the predictive power of functional brain activity simulations, using TVB or other similar tools, in explaining not just global brain dynamics but also the role of cerebellum in determining brain states in physiological conditions and in the numerous pathologies affecting the cerebro-cerebellar loop

    Spherical harmonic decomposition applied to spatial-temporal analysis of human high-density EEG

    Full text link
    We demonstrate an application of spherical harmonic decomposition to analysis of the human electroencephalogram (EEG). We implement two methods and discuss issues specific to analysis of hemispherical, irregularly sampled data. Performance of the methods and spatial sampling requirements are quantified using simulated data. The analysis is applied to experimental EEG data, confirming earlier reports of an approximate frequency-wavenumber relationship in some bands.Comment: 12 pages, 8 figures, submitted to Phys. Rev. E, uses APS RevTeX style

    The Scientific Case for Brain Simulators

    Get PDF
    A key element of the European Union’s Human Brain Project (HBP) and other large-scale brain research projects is the simulation of large-scale model networks of neurons. Here, we argue why such simulations will likely be indispensable for bridging the scales between the neuron and system levels in the brain, and why a set of brain simulators based on neuron models at different levels of biological detail should therefore be developed. To allow for systematic refinement of candidate network models by comparison with experiments, the simulations should be multimodal in the sense that they should predict not only action potentials, but also electric, magnetic, and optical signals measured at the population and system levels

    A Multi-isotopic approach to investigate the influence of land use on nitrate removal in a highly saline lake-aquifer system

    Get PDF
    Endorheic or closed drainage basins in arid and semi-arid regions are vulnerable to pollution. Nonetheless, in the freshwater-saltwater interface of endorheic saline lakes, oxidation-reduction (redox) reactions can attenuate pollutants such as nitrate (NO3- ). This study traces the ways of nitrogen (N) removal in the Pétrola lake- aquifer system (central Spain), an endorheic basin contaminated with NO3- (up to 99.2 mg/L in groundwater). This basin was declared vulnerable to NO3- pollution in 1998 due to the high anthropogenic pressures (mainly agriculture and wastewaters). Hydrochemical, multi-isotopic (δ18ONO3, δ15NNO3, δ13CDIC, δ18OH2O, and δ2HH2O) and geophysical techniques (electrical resistivity tomography) were applied to identify the main redox processes at the freshwater-saltwater interface. The results showed that the geometry of this interface is influenced by land use, causing spatial variability of nitrogen biogeochemical processes over the basin. In the underlying aquifer, NO3- showed an average concentration of 38.5 mg/L (n = 73) and was mainly derived from agricultural inputs. Natural attenuation of NO3- was observed in dryland farming areas (up to 72%) and in irrigation areas (up to 66%). In the Pétrola Lake, mineralization and organic matter degradation in lake sediment play an important role in NO3- reduction. Our findings are a major step forward in understanding freshwater-saltwater interfaces as reactive zones for NO3- attenuation. We further emphasize the importance of including a land use perspective when studying water quality-environmental relationships in hydrogeological systems dominated by density- driven circulation

    Emergent Strain of Human Adenovirus Endemic in Iowa

    Get PDF
    We evaluated 76 adenovirus type 7 (Ad7) isolates collected in Iowa from 1992 to 2002 and found that genome type Ad7d2 became increasingly prevalent. By 2002, it had supplanted all other Ad7 genome types. The association of Ad7d2 with severe illness and death calls for heightened public health concern

    Complementarity of Spike- and Rate-Based Dynamics of Neural Systems

    Get PDF
    Relationships between spiking-neuron and rate-based approaches to the dynamics of neural assemblies are explored by analyzing a model system that can be treated by both methods, with the rate-based method further averaged over multiple neurons to give a neural-field approach. The system consists of a chain of neurons, each with simple spiking dynamics that has a known rate-based equivalent. The neurons are linked by propagating activity that is described in terms of a spatial interaction strength with temporal delays that reflect distances between neurons; feedback via a separate delay loop is also included because such loops also exist in real brains. These interactions are described using a spatiotemporal coupling function that can carry either spikes or rates to provide coupling between neurons. Numerical simulation of corresponding spike- and rate-based methods with these compatible couplings then allows direct comparison between the dynamics arising from these approaches. The rate-based dynamics can reproduce two different forms of oscillation that are present in the spike-based model: spiking rates of individual neurons and network-induced modulations of spiking rate that occur if network interactions are sufficiently strong. Depending on conditions either mode of oscillation can dominate the spike-based dynamics and in some situations, particularly when the ratio of the frequencies of these two modes is integer or half-integer, the two can both be present and interact with each other

    Multi-basin depositional framework for moisture-balance reconstruction during the last 1300 years at Lake Bogoria, central Kenya Rift Valley

    Get PDF
    Multi-proxy analysis of sediment cores from five key locations in hypersaline, alkaline Lake Bogoria (central Kenya Rift Valley) has allowed reconstruction of its history of depositional and hydrological change during the past 1300years. Analyses including organic matter and carbonate content, granulometry, mineralogical composition, charcoal counting and high-resolution scanning of magnetic susceptibility and elemental geochemistry resulted in a detailed sedimentological and compositional characterization of lacustrine deposits in the three lake basins and on the two sills separating them. Thesepalaeolimnological data were supplemented with information on present-day sedimentation conditions based on seasonal sampling of settling particles and on measurement of physicochemical profiles through the water column. A new age model based on Pb-210, Cs-137 and C-14 dating captures the sediment chronology of this hydrochemically complex and geothermally fed lake. An extensive set of chronological tie points between the equivalent high-resolution proxy time series of the five sediment sequences allowed transfer of radiometric dates between the basins, enabling interbasin comparison of sedimentation dynamics through time. The resulting reconstruction demonstrates considerable moisture-balance variability through time, reflecting regional hydroclimate dynamics over the past 1300years. Between ca 690 and 950AD, the central and southern basins of Lake Bogoria were reduced to shallow and separated brine pools. In the former, occasional near-complete desiccation triggered massive trona precipitation. Between ca 950 and 1100AD, slightly higher water levels allowed the build-up of high pCO(2) leading to precipitation of nahcolite still under strongly evaporative conditions. Lake Bogoria experienced a pronounced highstand between ca 1100 and 1350AD, only to recede again afterwards. For a substantial part of the time between ca 1350 and 1800AD, the northern basin was probably disconnected from the united central and southern basins. Throughout the last two centuries, lake level has been relatively high compared to the rest of the past millennium. Evidence for increased terrestrial sediment supply in recent decades, due to anthropogenic soil erosion in the wider Bogoria catchment, is a reason for concern about possible adverse impacts on the unique ecosystem of Lake Bogoria
    corecore