40 research outputs found
Collagen type III alpha I is a gastro-oesophageal reflux disease susceptibility gene and a male risk factor for hiatus hernia
Published Online First 26 April 2009Background and objectives: Gastro-oesophageal reflux disease (GORD) is a common gastrointestinal disorder with a genetic component. Our aim was to identify genetic factors associated with GORD. Patients and methods: Four separate patient cohorts were analysed using a step-wise approach. (1) Whole genome linkage analysis was performed in 36 families. (2) Candidate genes were tested for GORD association in a trio cohort. (3) Genetic association was replicated in a case–control cohort. We also investigated genetic association to hiatus hernia (HH). (4) Protein expression was analysed in oesophageal biopsies. Results: A region on chromosome 2, containing collagen type III alpha 1 (COL3A1), was identified (LOD = 3.3) in families with dominant transmission of GORD, stratified for hiatus hernia (HH). COL3A1 showed significant association with GORD in an independent paediatric trio cohort (pcorr = 0.003). The association was male specific (pcorr = 0.018). The COL3A1 association was replicated in an independent adult case control cohort (pcorr = 0.022). Moreover, male specific association to HH (pcorr = 0.019) was found for a SNP not associated to GORD. Collagen type III protein was more abundant in oesophageal biopsies from male patients with GORD (p = 0.03). Conclusion: COL3A1 is a disease-associated gene in both paediatric and adult GORD. Furthermore, we show that COL3A1 is genetically associated with HH in adult males. The GORD- and HH-associated alleles are different, indicating two separate mechanisms leading to disease. Our data provides new insight into GORD aetiology, identifying a connective tissue component and indicating a tissue remodelling mechanism in GORD. Our results implicate gender differences in the genetic risk for both for GORD and HH.B Åsling, J Jirholt, P Hammond, M Knutsson, A Walentinsson, G Davidson, L Agreus, A Lehmann, M Lagerström-Ferme
4-aminobutyrate aminotrasferase (ABAT): genetic and pharmacological evidence for an involvement in gastro esophageal reflux disease
Extent: 9p.Gastro-esophageal reflux disease (GERD) is partly caused by genetic factors. The underlying susceptibility genes are currently unknown, with the exception of COL3A1. We used three independent GERD patient cohorts to identify GERD susceptibility genes. Thirty-six families, demonstrating dominant transmission of GERD were subjected to whole genome microsatellite genotyping and linkage analysis. Five linked regions were identified. Two families shared a linked region (LOD 3.9 and 2.0) on chromosome 16. We used two additional independent GERD patient cohorts, one consisting of 219 trios (affected child with parents) and the other an adult GERD case control cohort consisting of 256 cases and 485 controls, to validate individual genes in the linked region through association analysis. Sixty six single nucleotide polymorphism (SNP) markers distributed over the nine genes present in the linked region were genotyped in the independent GERD trio cohort. Transmission disequilibrium test analysis followed by multiple testing adjustments revealed a significant genetic association for one SNP located in an intron of the gene 4-aminobutyrate aminotransferase (ABAT) (Padj = 0.027). This association did not replicate in the adult case-control cohort, possibly due to the differences in ethnicity between the cohorts. Finally, using the selective ABAT inhibitor vigabatrin (c-vinyl GABA) in a dog study, we were able to show a reduction of transient lower esophageal sphincter relaxations (TLESRs) by 57.3611.4 % (p = 0.007) and the reflux events from 3.160.4 to 0.860.4 (p = 0.007). Our results demonstrate the direct involvement of ABAT in pathways affecting lower esophageal sphincter (LES) control and identifies ABAT as a genetic risk factor for GERD.Johan Jirholt, Bengt Åsling, Paul Hammond, Geoffrey Davidson, Mikael Knutsson, Anna Walentinsson, Jörgen M. Jensen, Anders Lehmann, Lars Agreus and Maria Lagerström-Ferme
Length of the antibody heavy chain complementarity determining region 3 as a specificity-determining factor
lThe antigen binding site of an antibody is made up of residues residing in six hypervariable loops of the heavy and light chains. In most cases several or all of these loops are required for the establishment of the antigen-binding surface. Five of these loops display a limited diversity in length and sequence while the third complementarity determining region (CDR) of the heavy chain is highly different between antibodies not only with respect to sequence but also with respect to length. Its extensive diversity is a key component in the establishment of binding sites allowing for the recognition of essentially any antigen by Immoral immunity. The relative importance of its sequence vs its length diversity in this context is however, not very well established. To investigate this matter further we have used an approach employing combinatorial antibody libraries and antigen-specific selection in the search for CDRH3 length and sequence diversity compatible with a given antigen specificity, the major antigenic determinant on the tumour-associated antigen mucin-1. In this way we have now defined heavy chain CDR3 length as a critical parameter in the creation of an antigen-specific binding site. We also propose that this may reflect a dependence of a particular structure of this hypervariable loop, the major carrier of diversity in the binding site, for establishment of a given specificity. Copyright (C) 2004 John Wiley Sons, Ltd
Exploiting sequence space : Shuffling in vivo formed complementarity determining regions into a master framework
A novel approach in molecular design is presented, where in vivo formed complementarity determining regions (CDR) from antibody genes were shuffled into a specific framework region. A synthetic gene library of soluble VH-fragments was created and the complexity of the library was determined by sequencing. The synthetic genes were diverse and contained random combinations of CDR from different germlines. All CDR were randomised in one step and by using in vivo formed CDR, the length, sequence and combination were varied simultaneously
Systemic signs of neutrophil mobilization during clinically stable periods and during exacerbations in smokers with obstructive pulmonary disease
Kristina Andelid,1 Anders Andersson,1 Shigemi Yoshihara,2 Christina Åhrén,4 Pernilla Jirholt,3 Ann Ekberg-Jansson,1 Anders Lindén1,51Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; 2Department of Pediatrics, Dokkyo Medical University, Japan; 3Department of Rheumatology and Inflammation Research, Institute of Medicine, 4Department of Bacteriology, Institute of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg; 5Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SwedenBackground: It is still unclear whether signs of neutrophil mobilization in the blood of patients with chronic obstructive pulmonary disease represent true systemic events and how these relate to bacterial colonization in the airways. In this study, we evaluated these issues during clinically stable periods and during exacerbations in smokers with obstructive pulmonary disease and chronic bronchitis (OPD-CB).Methods: Over a period of 60 weeks for each subject, blood samples were repeatedly collected from 60 smokers with OPD-CB during clinically stable periods, as well as during and after exacerbations. Myeloperoxidase (MPO) and neutrophil elastase (NE) protein and mRNA, growth of bacteria in sputum, and clinical parameters were analyzed. Ten asymptomatic smokers and ten never-smokers were included as controls.Results: We found that, during clinically stable periods, neutrophil and NE protein concentrations were increased in smokers with OPD-CB and in the asymptomatic smokers when compared with never-smokers. During exacerbations, neutrophil and MPO protein concentrations were further increased in smokers with OPD-CB, without a detectable increase in the corresponding mRNA during exacerbations. However, MPO and NE protein and mRNA displayed positive correlations. During exacerbations, only increased neutrophil concentrations were associated with growth of bacteria in sputum. Among patients with low transcutaneous oxygen saturation during exacerbations, PaO2 (partial oxygen pressure) correlated with concentrations of MPO and NE protein and neutrophils in a negative manner.Conclusion: There are signs of systemic neutrophil mobilization during clinically stable periods and even more so during exacerbations in chronic obstructive pulmonary disease. In this condition, MPO and NE may share a cellular origin, but its location remains uncertain. Factors other than local bacteria, including hypoxemia, may be important for driving systemic signs of neutrophil mobilization.Keywords: C-reactive protein, COPD, elastase, infection, myeloperoxidase, oxyge
A central core structure in an antibody variable domain determines antigen specificity
Antibody binding sites provide an adaptable surface capable of interacting with essentially any molecular target. Using CDR shuffling, residues important for the assembly of mucin-1 specific paratopes were defined by random recombination of the complementarity determining regions derived from a set of mucin-1 specific clones, previously selected from an antibody fragment library. It was found that positions 33 and 50 in the heavy chain and 32, 34, 90, 91 and 96 in the light chain were conserved in many of the clones. These particular residues seem to be located centrally in the binding site as indicated by a structure model analysis. The importance of several of these conserved residues was supported by their presence in a mouse monoclonal antibody with a known structure and the same epitope specificity. Several of these corresponding residues in the mouse monoclonal antibody are known to interact with the antigen. In conclusion, critical residues important for maintaining a human antigen-specific binding site during the process of in vitro antibody evolution were defined. Furthermore, an explanation for the observed restricted germline gene usage in certain antibody responses against protein epitopes is provided
Novel genetic marker for dilated end stage oesophagus and oesophageal adenocarcinoma risk? Authors' response
B Åsling, J Jirholt, P Hammond, M Knutsson, A Walentinsson, G Davidson, L Agreus, A Lehmann, M Lagerström-Ferme
Systemic cytokine signaling via IL-17 in smokers with obstructive pulmonary disease: a link to bacterial colonization?
Kristina Andelid,1 Sara Tengvall,1 Anders Andersson,1 Bettina Levänen,2 Karin Christenson,3 Pernilla Jirholt,3 Christina Åhrén,4 Ingemar Qvarfordt,1 Ann Ekberg-Jansson,1 Anders Lindén2 1Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; 2Unit of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; 3Department of Rheumatology and Inflammation Research, Institute of Medicine, 4Department of Infectious Diseases, Infection Control Unit, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden Abstract: We examined whether systemic cytokine signaling via interleukin (IL)-17 and growth-related oncogene-α (GRO-α) is impaired in smokers with obstructive pulmonary disease including chronic bronchitis (OPD-CB). We also examined how this systemic cytokine signaling relates to bacterial colonization in the airways of the smokers with OPD-CB. Currently smoking OPD-CB patients (n=60, corresponding to Global initiative for chronic Obstructive Lung Disease [GOLD] stage I–IV) underwent recurrent blood and sputum sampling over 60 weeks, during stable conditions and at exacerbations. We characterized cytokine protein concentrations in blood and bacterial growth in sputum. Asymptomatic smokers (n=10) and never-smokers (n=10) were included as control groups. During stable clinical conditions, the protein concentrations of IL-17 and GRO-α were markedly lower among OPD-CB patients compared with never-smoker controls, whereas the asymptomatic smoker controls displayed intermediate concentrations. Notably, among OPD-CB patients, colonization by opportunistic pathogens was associated with markedly lower IL-17 and GRO-α, compared with colonization by common respiratory pathogens or oropharyngeal flora. During exacerbations in the OPD-CB patients, GRO-α and neutrophil concentrations were increased, whereas protein concentrations and messenger RNA for IL-17 were not detectable in a reproducible manner. In smokers with OPD-CB, systemic cytokine signaling via IL-17 and GRO-α is impaired and this alteration may be linked to colonization by opportunistic pathogens in the airways. Given the potential pathogenic and therapeutic implications, these findings deserve to be validated in new and larger patient cohorts. Keywords: COPD, exacerbation, infection, neutrophil, lung, opportunist