225 research outputs found

    Use of fresh versus frozen or blast-frozen grapes for small-scale fermentation

    Get PDF
    Background: This paper firstly examines the validity of using laboratory-scale fermentations as a means of correlating winemaking outcomes with larger industrial scale fermentations. Secondly, conventional and blast-freezing of whole bunches were investigated for their relative suitability as methods of preservation as determined by the nature of the resulting wines. Methods: Red must fermentations were compared at the laboratory 80 kg scale, and the more industrially representative 500 kg pilot scale. Fermentation profiles and duration for both scales were found to be very similar. Whole bunches were either slow/conventionally frozen (−20°C), or quickly/blast-frozen (−25°C). Results: Wines made from frozen grapes compared well with the wine made from the fresh must. Color and chemical analyses of the wines revealed few differences. A duo-trio sensory evaluation showed that wine from blast-frozen grapes was more similar to the fresh wines than wines from conventional frozen grapes. Conclusion: The findings of this research suggest that whole-bunch blast-freezing of grapes is preferable to conventional freezing.Frank Schmid, Vladimir Jirane

    Impact of Lachancea thermotolerans strain and lactic acid concentration on Oenococcus oeni and malolactic fermentation in wine

    Get PDF
    The yeast Lachancea thermotolerans can produce lactic acid during alcoholic fermentation (AF) and thereby acidify wines with insufficient acidity. However, little is known about the impact of L. thermotolerans on Oenococcus oeni, the primary lactic acid bacterium used in malolactic fermentation (MLF). This study explored the impact of sequential cultures of L. thermotolerans and Saccharomyces cerevisiae on MLF performance in white and red wines. Four L. thermotolerans strains were tested in Sauvignon blanc with sequential S. cerevisiae inoculation, compared to an S. cerevisiae control and the initially un-inoculated treatments. The L. thermotolerans wines showed large differences in acidification, and progression of MLF depended on lactic acid production, even at controlled pH. The highest and lowest lactic acid producing strains were tested further in Merlot fermentations with both co-inoculated and sequentially inoculated O. oeni. The low lactic acid producing strain enabled successful MLF, even when this failed in the S. cerevisiae treatment, with dramatically quicker malic acid depletion in O. oeni co-inoculation than in sequential inoculation. In contrast, a high lactic acid producing strain inhibited MLF irrespective of the O. oeni inoculation strategy. In a follow-up experiment, increasing concentrations of exogenously added lactic acid slowed MLF and reduced O. oeni growth across different matrices, with 6 g/L of lactic acid completely inhibiting MLF. The results confirm the inhibitory effect of lactic acid on O. oeni while highlighting the potential of some L. thermotolerans strains to promote MLF and the others to inhibit it.Emma C. Snyder, Vladimir Jiranek, Ana Hranilovi

    Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry

    Get PDF
    To study the effects of assimilable nitrogen concentration on growth profile and on fermentation kinetics of Saccharomyces cerevisiae. Aims: To study the effects of assimilable nitrogen concentration on growth profile and on fermentation kinetics of Saccharomyces cerevisiae. Methods and Results: Saccharomyces cerevisiae was grown in batch in a defined medium with glucose (200 g l−1) as the only carbon and energy source, and nitrogen supplied as ammonium sulphate or phosphate forms under different concentrations. The initial nitrogen concentration in the media had no effect on specific growth rates of the yeast strain PYCC 4072. However, fermentation rate and the time required for completion of the alcoholic fermentation were strongly dependent on nitrogen availability. At the stationary phase, the addition of ammonium was effective in increasing cell population, fermentation rate and ethanol. Conclusions: The yeast strain required a minimum of 267 mg N l−1 to attain complete dryness of media, within the time considered for the experiments. Lower levels were enough to support growth, although leading to sluggish or stuck fermentation. Significance and Impact of the Study: The findings reported here contribute to elucidate the role of nitrogen on growth and fermentation performance of wine yeast. This information might be useful to the wine industry where excessive addition of nitrogen to prevent sluggish or stuck fermentation might have a negative impact on wine stability and quality

    Lactic acid bacteria in wine: technological advances and evaluation of their functional role

    Get PDF
    Currently, the main role of Lactic Acid Bacteria (LAB) in wine is to conduct the malolactic fermentation (MLF). This process can increase wine aroma and mouthfeel, improve microbial stability and reduce the acidity of wine. A growing number of studies support the appreciation that LAB can also significantly, positively and negatively, contribute to the sensorial profile of wine through many different enzymatic pathways. This is achieved either through the synthesis of compounds such as diacetyl and esters or by liberating bound aroma compounds such as glycoside-bound primary aromas and volatile thiols which are odorless in their bound form. LAB can also liberate hydroxycinnamic acids from their tartaric esters and have the potential to break down anthocyanin glucosides, thus impacting wine color. LAB can also produce enzymes with the potential to help in the winemaking process and contribute to stabilizing the final product. For example, LAB exhibit peptidolytic and proteolytic activity that could break down the proteins causing wine haze, potentially reducing the need for bentonite addition. Other potential contributions include pectinolytic activity, which could aid juice clarification and the ability to break down acetaldehyde, even when bound to SO2, reducing the need for SO2 additions during winemaking. Considering all these findings, this review summarizes the novel enzymatic activities of LAB that positively or negatively affect the quality of wine. Inoculation strategies, LAB improvement strategies, their potential to be used as targeted additions, and technological advances involving their use in wine are highlighted along with suggestions for future research.Carla Virdis, Krista Sumby, Eveline Bartowsky and Vladimir Jirane

    Effect of 'loss of function' mutation in SER in wine yeast: fermentation outcomes in co-inoculation with non-Saccharomyces

    Get PDF
    Published: 20 April 2022In wine fermentation, improved wine complexity and sensorial properties can arise from the use of non-Saccharomyces yeast. Generally less alcohol tolerant, such strains often do not finish fermentation, therefore requiring a second inoculation with the more robust Saccharomyces cerevisiae, usually added on Day 3. This sequential approach affords non-Saccharomyces time to make an impact before being overtaken by S. cerevisiae. However, two inoculations are inconvenient; therefore the identification of a slow growing S. cerevisiae strain that can be used in a single co-inoculation with the non-Saccharomyces yeast is highly attractive. In this study we investigated the use of the naturally occurring ‘loss of function’ SER1 variant, identified in a Sake yeast, for the purposes of carrying out co-inoculated wine fermentations. The SER1-232(G > C; G78R) change was introduced into the commonly used wine strain, EC1118, via CRISPR/Cas9 editing. In a chemically defined grape juice medium, the SER1(G78R) mutant grew and fermented more slowly and increased acetic acid, succinic acid and glycerol concentrations. Simultaneous inoculation with the slower-growing mutant with a Metschnikowia pulcherrima or Lachancea thermotolerans strain in sterile Sauvignon blanc juice resulted in differences in sensorial compounds, most likely derived from the presence of non-Saccharomyces yeasts. The EC1118 SER1 (G78R) mutant completed fermentation with M. pulcherrima, MP2, and in fact improved the viability of MP2 compared to when it was used as a monoculture. The SER1 (G78R) mutant also promoted both the growth of the SO2-sensitive L. thermotolerans strain, Viniflora® Concerto™, in a juice high in SO2 and its subsequent dominance during fermentation. In co-fermentations with wild-type EC1118, the Concerto™ population was substantially reduced with no significant changes in wine properties. This research adds to our understanding of the use of a novel slow-growing S. cerevisiae yeast in wine fermentations co-inoculated with non-Saccharomyces strains.Tom A. Lang, Michelle E. Walker, Paul K. Boss and Vladimir Jirane

    Genomic analysis of Kazachstania aerobia and Kazachstania servazzii reveals duplication of genes related to acetate ester production

    Get PDF
    Kazachstania aerobia and Kazachstania servazzii can affect wine aroma by increasing acetate ester concentrations, most remarkably phenylethyl acetate and isoamyl acetate. The genetic basis of this is unknown, there being little to no sequence data available on the genome architecture. We report for the first time the near-complete genome sequence of the two species using long-read (PacBio) sequencing (K. aerobia 20 contigs, one scaffold; and K. servazzii 22 contigs, one scaffold). The annotated genomes of K. aerobia (12.5Mb) and K. servazzii (12.3Mb) were compared to Saccharomyces cerevisiae genomes (laboratory strain S288C and wine strain EC1118). Whilst a comparison of the two Kazachstania spp. genomes revealed few differences between them, divergence was evident in relation to the genes involved in ester biosynthesis, for which gene duplications or absences were apparent. The annotations of these genomes are valuable resources for future research into the evolutionary biology of Kazachstania and other yeast species (comparative genomics) as well as understanding the metabolic processes associated with alcoholic fermentation and the production of secondary ‘aromatic’ metabolites (transcriptomics, proteomics and metabolomics).Mandy Man-Hsi Lin, Michelle E. Walker, Vladimir Jiranek, and Krista M. Sumb

    Measures to improve wine malolactic fermentation

    Get PDF
    This review focuses on the considerable amount of research that has been directed towards the improvement of efficiency and reliability of malolactic fermentation (MLF), which is important in winemaking. From this large body of work, it is clear that reliable MLF is essential for process efficiency and prevention of spoilage in the final product. Impediments to successful MLF in wine, the impact of grape and wine ecology and how this may affect MLF outcome are discussed. Further focus is given to how MLF success may be enhanced, via alternative inoculation strategies, MLF progress sensing technologies and the use of different bacterial species. An update of how this information may be used to enhance and improve sensory outcomes through metabolite production during MLF and suggestions for future research priorities for the field are also provided.Krista M. Sumby, Louise Bartle, Paul R. Grbin, Vladimir Jirane

    Development and use of a quantum dot probe to track multiple yeast strains in mixed culture

    Get PDF
    Published 10 November 2014Saccharomyces cerevisiae strains vary in their ability to develop and enhance sensory attributes of alcoholic beverages and are often found growing in mixed strain fermentations; however, quantifying individual strains is challenging due to quantification inaccuracies, low marker longevity, and compromised kinetics. We developed a fluorescent probe, consisting of glutathione molecules conjugated to a quantum dot (QD). Two S. cerevisiae strains were incubated with different coloured probes (QD attached to glutathione molecules, QD-GSH), fermented at multiple ratios, and quantified using confocal microscopy. The QD method was compared with a culture method using microsatellite DNA analysis (MS method). Probes were taken up by an ADP1 encoded transporter, transferred from mother cell to daughter cell, detectable in strains throughout fermentation, and were non-toxic. This resulted in a new quantification method that was more accurate and efficient than the MS method.Frida S. Gustafsson, Matthew D. Whiteside, Vladimir Jiranek and Daniel M. Dural

    Genome sequence of Australian indigenous wine yeast Torulaspora delbrueckii COFT1 using nanopore sequencing

    Get PDF
    Published 26 April 2018Here, we report the first sequenced genome of an indigenous Australian wine isolate of Torulaspora delbrueckii using the Oxford Nanopore MinION and Illumina HiSeq sequencing platforms. The genome size is 9.4 Mb and contains 4,831 genes.Federico Tondini, Vladimir Jiranek, Paul R. Grbin, Cristobal A. Onett

    Removal of volatile phenols from wine using crosslinked cyclodextrin polymers

    Get PDF
    Volatile phenols have been implicated as contributors to off-odors associated with taints from bushfire smoke and microbial spoilage. Various methods for the amelioration of off-odors have been evaluated, but to date, they have not included cyclodextrin (CD) polymers. In the current study, two CD polymers were prepared from β- and γ-CD, using hexamethylene diisocyanate (HDI) as a crosslinking agent. Adsorption tests were performed with four volatile phenols (guaiacol, 4-methylguaiacol, 4-ethylguaiacol and 4-ethylphenol) at concentrations up to 1 mg/L. The removal of volatile phenols by CD polymers achieved equilibrium almost instantly, with isotherm tests suggesting an adsorption capacity of 20.7 µg of volatile phenol per gram of polymer. Langmuir and Freundlich models were subsequently used to fit the data. In batch adsorption tests, the CD polymers achieved 45 to 77% removal of volatile phenols. Polymer reusability was also evaluated and was found to be excellent. A comparison between volatile phenol adsorption by CDs vs. CD polymers, determined using a novel four-phase headspace solid-phase microextraction (HS-SPME) method for gas chromatography-mass spectrometry (GC-MS), suggests CD polymers offer several advantages for use by the wine industry.Chao Dang, Vladimir Jiranek, Dennis K. Taylor and Kerry L. Wilkinso
    • …
    corecore