16 research outputs found

    Branchiootorenal syndrome and oculoauriculovertebral spectrum features associated with duplication of SIX1 , SIX6 , and OTX2 resulting from a complex chromosomal rearrangement

    Full text link
    We report on a 26-month-old boy with developmental delay and multiple congenital anomalies, including many features suggestive of either branchiootorenal syndrome (BOR) or oculoauriculovertebral spectrum (OAVS). Chromosomal microarray analysis (CMA) initially revealed a copy-number gain with a single BAC clone (RP11-79M1) mapping to 14q23.1. FISH analysis showed that the third copy of this genomic region was inserted into the long arm of one chromosome 13. The same pattern was also seen in the chromosomes of the father, who has mental retardation, short stature, hypernasal speech, and minor craniofacial anomalies, including tall forehead, and crowded dentition. Subsequent whole genome oligonucleotide microarray analysis revealed an ∼11.79 Mb duplication of chromosome 14q22.3–q23.3 and a loss of an ∼4.38 Mb sequence in 13q21.31–q21.32 in both the propositus and his father and FISH supported the apparent association of the two events. Chromosome 14q22.3–q23.3 contains 51 genes, including SIX1 , SIX6 , and OTX2 . A locus for branchiootic syndrome (BOS) has been mapped to 14q21.3–q24.3, and designated as branchiootic syndrome 3 (BOS3). Interestingly, mutations in SIX1 have been reported in patients with BOR/BOS3. We propose that the increased dosage of SIX1 , SIX6 , or OTX2 may be responsible for the BOR and OAVS-like features in this family. © 2008 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60991/1/32398_ftp.pd

    Duplication 16p11.2 in a child with infantile seizure disorder

    Full text link
    Submicroscopic recurrent 16p11.2 rearrangements are associated with several neurodevelopmental disorders, including autism, mental retardation, and schizophrenia. The common 16p11.2 region includes 24 known genes, of which 22 are expressed in the developing human fetal nervous system. As yet, the mechanisms leading to neurodevelopmental abnormalities and the broader phenotypes associated with deletion or duplication of 16p11.2 have not been clarified. Here we report a child with spastic quadriparesis, refractory infantile seizures, severe global developmental delay, hypotonia, and microcephaly, and a de novo 598 kb 16p11.2 microduplication. Family history is negative for any of these features in parents and immediate family members. Sequencing analyses showed no mutations in DOC2A , QPRT , and SEZ6L2 , genes within the duplicated 16p11.2 region that have been implicated in neuronal function and/or seizure related phenotypes. The child's clinical course is consistent with a rare seizure disorder called malignant migrating partial seizure disorder of infancy, raising the possibility that duplication or disruption of genes in the 16p11.2 interval may contribute to this severe disorder. © 2010 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75769/1/33415_ftp.pd

    Clinical and biochemical characterization of four patients with mutations in ECHS1

    Get PDF
    Short-chain enoyl-CoA hydratase (SCEH, encoded by ECHS1) catalyzes hydration of 2-trans-enoyl-CoAs to 3(S)-hydroxy-acyl-CoAs. SCEH has a broad substrate specificity and is believed to play an important role in mitochondrial fatty acid oxidation and in the metabolism of branched-chain amino acids. Recently, the first patients with SCEH deficiency have been reported revealing only a defect in valine catabolism. We investigated the role of SCEH in fatty acid and branched-chain amino acid metabolism in four newly identified patients. In addition, because of the Leigh-like presentation, we studied enzymes involved in bioenergetics. Metabolite, enzymatic, protein and genetic analyses were performed in four patients, including two siblings. Palmitate loading studies in fibroblasts were performed to study mitochondrial β-oxidation. In addition, enoyl-CoA hydratase activity was measured with crotonyl-CoA, methacrylyl-CoA, tiglyl-CoA and 3-methylcrotonyl-CoA both in fibroblasts and liver to further study the role of SCEH in different metabolic pathways. Analyses of pyruvate dehydrogenase and respiratory chain complexes were performed in multiple tissues of two patients. All patients were either homozygous or compound heterozygous for mutations in the ECHS1 gene, had markedly reduced SCEH enzymatic activity and protein level in fibroblasts. All patients presented with lactic acidosis. The first two patients presented with vacuolating leukoencephalopathy and basal ganglia abnormalities. The third patient showed a slow neurodegenerative condition with global brain atrophy and the fourth patient showed Leigh-like lesions with a single episode of metabolic acidosis. Clinical picture and metabolite analysis were not consistent with a mitochondrial fatty acid oxidation disorder, which was supported by the normal palmitate loading test in fibroblasts. Patient fibroblasts displayed deficient hydratase activity with different substrates tested. Pyruvate dehydrogenase activity was markedly reduced in particular in muscle from the most severely affected patients, which was caused by reduced expression of E2 protein, whereas E2 mRNA was increased. Despite its activity towards substrates from different metabolic pathways, SCEH appears to be only crucial in valine metabolism, but not in isoleucine metabolism, and only of limited importance for mitochondrial fatty acid oxidation. In severely affected patients SCEH deficiency can cause a secondary pyruvate dehydrogenase deficiency contributing to the clinical presentatio

    Enantiomer-specific pharmacokinetics of D,L-3-hydroxybutyrate:Implications for the treatment of multiple acyl-CoA dehydrogenase deficiency

    Get PDF
    D,L-3-hydroxybutyrate (D,L-3-HB, a ketone body) treatment has been described in several inborn errors of metabolism, including multiple acyl-CoA dehydrogenase deficiency (MADD; glutaric aciduria type II). We aimed to improve the understanding of enantiomer-specific pharmacokinetics of D,L-3-HB. Using UPLC-MS/MS, we analyzed D-3-HB and L-3-HB concentrations in blood samples from three MADD patients, and blood and tissue samples from healthy rats, upon D,L-3-HB salt administration (patients: 736-1123 mg/kg/day; rats: 1579-6317 mg/kg/day of salt-free D,L-3-HB). D,L-3-HB administration caused substantially higher L-3-HB concentrations than D-3-HB. In MADD patients, both enantiomers peaked at 30 to 60 minutes, and approached baseline after 3 hours. In rats, D,L-3-HB administration significantly increased Cmax and AUC of D-3-HB in a dose-dependent manner (controls vs ascending dose groups for Cmax: 0.10 vs 0.30-0.35-0.50 mmol/L, and AUC: 14 vs 58-71-106 minutes*mmol/L), whereas for L-3-HB the increases were significant compared to controls, but not dose proportional (Cmax: 0.01 vs 1.88-1.92-1.98 mmol/L, and AUC: 1 vs 380-454-479 minutes*mmol/L). L-3-HB concentrations increased extensively in brain, heart, liver, and muscle, whereas the most profound rise in D-3-HB was observed in heart and liver. Our study provides important knowledge on the absorption and distribution upon oral D,L-3-HB. The enantiomer-specific pharmacokinetics implies differential metabolic fates of D-3-HB and L-3-HB

    Consensus guidelines for management of hyperammonaemia in paediatric patients receiving continuous kidney replacement therapy.

    Get PDF
    Hyperammonaemia in children can lead to grave consequences in the form of cerebral oedema, severe neurological impairment and even death. In infants and children, common causes of hyperammonaemia include urea cycle disorders or organic acidaemias. Few studies have assessed the role of extracorporeal therapies in the management of hyperammonaemia in neonates and children. Moreover, consensus guidelines are lacking for the use of non-kidney replacement therapy (NKRT) and kidney replacement therapies (KRTs, including peritoneal dialysis, continuous KRT, haemodialysis and hybrid therapy) to manage hyperammonaemia in neonates and children. Prompt treatment with KRT and/or NKRT, the choice of which depends on the ammonia concentrations and presenting symptoms of the patient, is crucial. This expert Consensus Statement presents recommendations for the management of hyperammonaemia requiring KRT in paediatric populations. Additional studies are required to strengthen these recommendations

    A novel GK Ala469Val variant resulting in glycerol kinase deficiency with concurrent hepatoblastoma: A case report

    No full text
    Glycerol kinase deficiency (GKD) is a rare X-linked condition where glycerol cannot be phosphorylated to glycerol-3-phosphate, a key component of gluconeogenesis. Clinical presentation varies widely. We present a novel variant of the responsible GK in a patient with concurrent hepatoblastoma, whose course was complicated by hypoglycemia. Hepatoblastoma has not previously been described with GKD, highlighting the need for further research into GKD and its potential role in the pathogenesis of some forms of hepatoblastoma

    Novel multilocus imprinting disturbances in a child with expressive language delay and intellectual disability

    Full text link
    Multilocus imprinting disturbances (MLID) have been associated with up to 12% of patients with Beckwith-Wiedemann syndrome, Silver-Russell syndrome, and pseudohypoparathyroidism type 1B (PHP1B). Single-gene defects affecting components of the subcortical maternal complex (SCMC) have been reported in cases with multilocus hypomethylation defects. We present a patient with speech and language impairment with mild Angelman syndrome (AS) features who demonstrates maternal hypomethylation at 15q11.2 (SNRPN) as well as 11p15.5 (KCNQ1OT1) imprinted loci, but normal methylation at 6q24.2 (PLAGL1), 7p12.1 (GRB10), 7q32.2 (MEST), 11p15.5 (H19), 14q32.2 (MEG3), 19q13.43 (PEG3), and 20q13.32 (GNAS and GNAS-AS1). The proband also has no copy number nor sequence variants within the AS imprinting center or in UBE3A. Maternal targeted next generation sequencing did not identify any pathogenic variants in ZPF57, NLRP2, NLRP5, NLRP7, KHDC3L, PADI6, TLE6, OOEP, UHRF1 or ZAR1. The presence of very delayed, yet functional speech, behavioral difficulties, EEG abnormalities but without clinical seizures, and normocephaly are consistent with the 15q11.2 hypomethylation defect observed in this patient. To our knowledge, this is the first report of MLID in a patient with mild, likely mosaic, Angelman syndrome.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/173023/1/ajmga62752_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/173023/2/ajmga62752.pd

    Somatic mosaicism for a novel PDHA1 mutation in a male with severe pyruvate dehydrogenase complex deficiency

    No full text
    Pyruvate dehydrogenase complex (PDC) deficiencies are mostly due to mutations in the X-linked PDHA1 gene. Males with hemizygous PDHA1 mutations are clinically more severely affected, while those with mosaic PDHA1 mutations may manifest milder phenotypes. We report a patient harboring a novel, mosaic missense PDHA1 mutation, c.523G > A (p.A175T), with a severe clinical presentation of congenital microcephaly, significant brain abnormalities, persistent seizures, profound developmental delay, and failure to thrive. We review published cases of PDHA1 mosaicism

    Lethal neonatal case and review of primary short-chain enoyl-CoA hydratase (SCEH) deficiency associated with secondary lymphocyte pyruvate dehydrogenase complex (PDC) deficiency

    Get PDF
    Mutations in ECHS1 result in short-chain enoyl-CoA hydratase (SCEH) deficiency which mainly affects the catabolism of various amino acids, particularly valine. We describe a case compound heterozygous for ECHS1 mutations c.836T>C (novel) and c.8C>A identified by whole exome sequencing of proband and parents. SCEH deficiency was confirmed with very low SCEH activity in fibroblasts and nearly absent immunoreactivity of SCEH. The patient had a severe neonatal course with elevated blood and cerebrospinal fluid lactate and pyruvate concentrations, high plasma alanine and slightly low plasma cystine. 2-Methyl-2,3-dihydroxybutyric acid was markedly elevated as were metabolites of the three branched-chain α-ketoacids on urine organic acids analysis. These urine metabolites notably decreased when lactic acidosis decreased in blood. Lymphocyte pyruvate dehydrogenase complex (PDC) activity was deficient, but PDC and α-ketoglutarate dehydrogenase complex activities in cultured fibroblasts were normal. Oxidative phosphorylation analysis on intact digitonin-permeabilized fibroblasts was suggestive of slightly reduced PDC activity relative to control range in mitochondria. We reviewed 16 other cases with mutations in ECHS1 where PDC activity was also assayed in order to determine how common and generalized secondary PDC deficiency is associated with primary SCEH deficiency. For reasons that remain unexplained, we find that about half of cases with primary SCEH deficiency also exhibit secondary PDC deficiency. The patient died on day-of-life 39, prior to establishing his diagnosis, highlighting the importance of early and rapid neonatal diagnosis because of possible adverse effects of certain therapeutic interventions, such as administration of ketogenic diet, in this disorder. There is a need for better understanding of the pathogenic mechanisms and phenotypic variability in this relatively recently discovered disorde
    corecore