2 research outputs found

    Slowly rotating voids in cosmology

    Get PDF
    We consider a spacetime consisting of an empty void separated from an almost Friedmann-Lema\^\i tre-Robertson-Walker (FLRW) dust universe by a spherically symmetric, slowly rotating shell which is comoving with the cosmic dust. We treat in a unified manner all types of the FLRW universes. The metric is expressed in terms of a constant characterizing the angular momentum of the shell, and parametrized by the comoving radius of the shell. Treating the rotation as a first order perturbation, we compute the dragging of inertial frames as well as the apparent motion of distant stars within the void. Finally, we discuss, in terms of in principle measurable quantities, 'Machian' features of the model.Comment: 21 pages, 5 figures, REVTex, accepted for publication in Class.Quant.Gravit

    Interpretation of the Siklos solutions as exact gravitational waves in the anti-de Sitter universe

    Get PDF
    The Siklos class of solutions of Einstein's field equations is investigated by analytical methods. By studying the behaviour of free particles we reach the conclusion that the space-times represent exact gravitational waves propagating in the anti-de Sitter universe. The presence of a negative cosmological constant implies that the 'background' space is not asymptotically flat and requires a 'rotating' reference frames in order to fully simplify and view the behaviour of nearby test particles. The Kaigorodov space-time, which is the simplest representative of the Siklos class, is analyzed in more detail. It is argued that it may serve as a 'cosmological' analogue of the well-known homogeneous pp-waves in the flat universe.Comment: 17 pages, to be published in Class. Quantum Gravit
    corecore