4 research outputs found

    Review of Modeling, Modulation, and Control Strategies for the Dual-Active-Bridge DC/DC Converter

    No full text
    This paper provides a comprehensive review of the existing research on the Dual Active Bridge (DAB) DC-DC converter, focusing on modeling methods, modulation strategies, optimization algorithms, and control methods. A comparative analysis of selected methods along with guidelines to assist engineers and researchers in their study of DAB is also presented. Firstly, a comprehensive review of modulation strategies for DAB is provided, ranging from classical phase-shift modulation to the popular asymmetric duty modulation. The intrinsic relationships among different modulation methods are summarized, and a comparison is made based on the difficulty of control and DAB operating characteristics. Secondly, the various modeling methods for DAB are described, including reduced-order modeling, generalized state-space averaging modeling, and discrete-time modeling methods. A comparison is made based on the suitability for different application scenarios, providing recommendations for the adoption of different modeling methods. Furthermore, a survey of optimization algorithms for modulation methods is presented, including classical algorithms, swarm intelligence optimization, and reinforcement learning algorithms. A number of criteria are proposed for different algorithms, and an analysis of the unresolved challenges and future prospects is provided. Finally, the advanced control methods for DAB are summarized based on control effectiveness and applicability. The article concludes with a summary and an outlook on future research directions is also provided

    Measurement and Analysis of Contribution Rate for China Rice Input Factors via a Varying-Coefficient Production Function Model

    No full text
    To explore the internal driving force of the growth of rice yield per unit area in China, a model based on varying-coefficient production function is proposed in this study, which comes from the idea that the constant elasticity parameters in the Cobb-Douglas production function can be extended to functional forms. Applying such model to economic growth analysis, on the one hand, the dynamic contribution rate of each input factor can be measured, and, on the other hand, the contribution rate of the input factor can be decomposed into net factor contribution rate and interaction factor contribution rate, thus expanding the explanatory ability of growth rate equation. Using such model, the output elasticity of capital and labor in China’s rice yield growth are calculated from 1978 to 2020, and the dynamic characteristics of the contribution rate of capital, labor and generalized technological progress are analyzed. Next, the capital contribution rate is decomposed according to the composition of the total capital. The results show that: (1) The capital elasticity and labor elasticity are indeed not constant in different years. In China, from 1978 to 2020 the value of capital elasticity was between 0.3209 to 0.3589, with a mean of 0.3437, and the value of labor elasticity was between −0.1759 to −0.1640, with a mean of −0.1730. (2) Natural disasters do affect capital elasticity and labor elasticity in rice production. (3) When the annual proportion of crop disasters increases, the contribution rate of interaction between capital and natural disaster (KDR) value is negative, whereas the contribution rate of interaction between labor and natural disaster (LDR) value is positive. (4) Compared with 1978, the generalized technological progress contribution rate (GTPR) of the rice yield growth in China from 1979 to 2020 shows a declining trend in fluctuations, whereas the total capital contribution rate (TKR) shows a rising trend in fluctuations and the total labor contribution rate (TLR) is relatively stable in the same period. Since 2000, capital investment has become the main factor for the rice yield growth per unit area in China, of which machinery, chemical fertilizer, seed and pesticide are the four most important input factors

    Estimating Relative Chlorophyll Content in Rice Leaves Using Unmanned Aerial Vehicle Multi-Spectral Images and Spectral–Textural Analysis

    No full text
    Leaf chlorophyll content is crucial for monitoring plant growth and photosynthetic capacity. The Soil and Plant Analysis Development (SPAD) values are widely utilized as a relative chlorophyll content index in ecological agricultural surveys and vegetation remote sensing applications. Multi-spectral cameras are a cost-effective alternative to hyperspectral cameras for agricultural monitoring. However, the limited spectral bands of multi-spectral cameras restrict the number of vegetation indices (VIs) that can be synthesized, necessitating the exploration of other options for SPAD estimation. This study evaluated the impact of using texture indices (TIs) and VIs, alone or in combination, for estimating rice SPAD values during different growth stages. A multi-spectral camera was attached to an unmanned aerial vehicle (UAV) to collect remote sensing images of the rice canopy, with manual SPAD measurements taken immediately after each flight. Random forest (RF) was employed as the regression method, and evaluation metrics included coefficient of determination (R2) and root mean squared error (RMSE). The study found that textural information extracted from multi-spectral images could effectively assess the SPAD values of rice. Constructing TIs by combining two textural feature values (TFVs) further improved the correlation of textural information with SPAD. Utilizing both VIs and TIs demonstrated superior performance throughout all growth stages. The model works well in estimating the rice SPAD in an independent experiment in 2022, proving that the model has good generalization ability. The results suggest that incorporating both spectral and textural data can enhance the precision of rice SPAD estimation throughout all growth stages, compared to using spectral data alone. These findings are of significant importance in the fields of precision agriculture and environmental protection
    corecore