121 research outputs found

    Bit Allocation using Optimization

    Full text link
    In this paper, we consider the problem of bit allocation in neural video compression (NVC). Due to the frame reference structure, current NVC methods using the same R-D (Rate-Distortion) trade-off parameter Ī»\lambda for all frames are suboptimal, which brings the need for bit allocation. Unlike previous methods based on heuristic and empirical R-D models, we propose to solve this problem by gradient-based optimization. Specifically, we first propose a continuous bit implementation method based on Semi-Amortized Variational Inference (SAVI). Then, we propose a pixel-level implicit bit allocation method using iterative optimization by changing the SAVI target. Moreover, we derive the precise R-D model based on the differentiable trait of NVC. And we show the optimality of our method by proofing its equivalence to the bit allocation with precise R-D model. Experimental results show that our approach significantly improves NVC methods and outperforms existing bit allocation methods. Our approach is plug-and-play for all differentiable NVC methods, and it can be directly adopted on existing pre-trained models

    Analysis and characterization of the functional TGFĪ² receptors required for BMP6-induced osteogenic differentiation of mesenchymal progenitor cells

    Get PDF
    Although BMP6 is highly capable of inducing osteogenicdifferentiation of mesenchymal progenitor cells (MPCs), themolecular mechanism involved remains to be fully elucidated.Using dominant negative (dn) mutant form of type I and type IITGFĪ² receptors, we demonstrated that three dn-type I receptors(dnALK2, dnALK3, dnALK6), and three dn-type II receptors(dnBMPRII, dnActRII, dnActRIIB), effectively diminished BMP6-induced osteogenic differentiation of MPCs. These findingssuggested that ALK2, ALK3, ALK6, BMPRII, ActRII and ActRIIBare essential for BMP6-induced osteogenic differentiation ofMPCs. However, MPCs in this study do not express ActRIIB.Moreover, RNA interference of ALK2, ALK3, ALK6, BMPRIIand ActRII inhibited BMP6-induced osteogenic differentiationin MPCs. Our results strongly suggested that BMP6-inducedosteogenic differentiation of MPCs is mediated by its functionalTGFĪ² receptors including ALK2, ALK3, ALK6, BMPRII, andActRII. [BMB Reports 2013; 46(2): 107-112

    Distinct Extracellular RNA Profiles in Different Plasma Components

    Get PDF
    Circulating extracellular RNAs (exRNAs) have great potential to serve as biomarkers for a wide range of diagnostic, therapeutic, and prognostic applications. So far, knowledge of the difference among different sources of exRNAs is limited. To address this issue, we performed a sequential physical and biochemical precipitation to collect four fractions (platelets and cell debris, the thrombin-induced precipitates, extracellular vesicles, and supernatant) from each of 10 plasma samples. From total RNAs of the 40 fractions, we prepared ligation-free libraries to profile full spectrum of all RNA species, without size selection and rRNA reduction. Due to complicated RNA composition in these libraries, we utilized a successive stepwise alignment strategy to map the RNA sequences to different RNA categories, including miRNAs, piwi-interacting RNAs, tRNAs, rRNAs, lincRNAs, snoRNAs, snRNAs, other ncRNAs, protein coding RNAs, and circRNAs. Our data showed that each plasma fraction had its own unique distribution of RNA species. Hierarchical cluster analyses using transcript abundance demonstrated similarities in the same plasma fraction and significant differences between different fractions. In addition, we observed various unique transcripts, and novel predicted miRNAs among these plasma fractions. These results demonstrate that the distribution of RNA species and functional RNA transcripts is plasma fraction-dependent. Appropriate plasma preparation and thorough inspection of different plasma fractions are necessary for an exRNA-based biomarker study

    The instantly blocking-based fluorescent immunochromatographic assay for the detection of SARS-CoV-2 neutralizing antibody

    Get PDF
    IntroductionAt present, there is an urgent need for the rapid and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies (NAbs) to evaluate the ability of the human body to resist coronavirus disease 2019 (COVID-19) after infection or vaccination. The current gold standard for neutralizing antibody detection is the conventional virus neutralization test (cVNT), which requires live pathogens and biosafety level-3 (BSL-3) laboratories, making it difficult for this method to meet the requirements of large-scale routine detection. Therefore, this study established a time-resolved fluorescence-blocking lateral flow immunochromatographic assay (TRF-BLFIA) that enables accurate, rapid quantification of NAbs in subjects.MethodsThis assay utilizes the characteristic that SARS-CoV-2 neutralizing antibody can specifically block the binding of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and angiotensin-converting enzyme 2 (ACE2) to rapidly detect the content of neutralizing antibody in COVID-19-infected patients and vaccine recipients.ResultsWhen 356 samples of vaccine recipients were measured, the coincidence rate between this method and cVNT was 88.76%, which was higher than the coincidence rate of 76.97% between cVNT and a conventional chemiluminescence immunoassay detecting overall binding anti-Spike-IgG. More importantly, this assay does not need to be carried out in BSL-2 or 3 laboratories.DiscussionTherefore, this product can detect NAbs in COVID-19 patients and provide a reference for the prognosis and outcome of patients. Simultaneously, it can also be applied to large-scale detection to better meet the needs of neutralizing antibody detection after vaccination, making it an effective tool to evaluate the immunoprotective effect of COVID-19 vaccines

    Mesenchymal Progenitor Cells and Their Orthopedic Applications: Forging a Path towards Clinical Trials

    Get PDF
    Mesenchymal progenitor cells (MPCs) are nonhematopoietic multipotent cells capable of differentiating into mesenchymal and nonmesenchymal lineages. While they can be isolated from various tissues, MPCs isolated from the bone marrow are best characterized. These cells represent a subset of bone marrow stromal cells (BMSCs) which, in addition to their differentiation potential, are critical in supporting proliferation and differentiation of hematopoietic cells. They are of clinical interest because they can be easily isolated from bone marrow aspirates and expanded in vitro with minimal donor site morbidity. The BMSCs are also capable of altering disease pathophysiology by secreting modulating factors in a paracrine manner. Thus, engineering such cells to maximize therapeutic potential has been the focus of cell/gene therapy to date. Here, we discuss the path towards the development of clinical trials utilizing BMSCs for orthopaedic applications. Specifically, we will review the use of BMSCs in repairing critical-sized defects, fracture nonunions, cartilage and tendon injuries, as well as in metabolic bone diseases and osteonecrosis. A review of www.ClinicalTrials.gov of the United States National Institute of Health was performed, and ongoing clinical trials will be discussed in addition to the sentinel preclinical studies that paved the way for human investigations

    Defective Osteogenic Differentiation in the Development of Osteosarcoma

    Get PDF
    Osteosarcoma (OS) is associated with poor prognosis due to its high incidence of metastasis and chemoresistance. It often arises in areas of rapid bone growth in long bones during the adolescent growth spurt. Although certain genetic conditions and alterations increase the risk of developing OS, the molecular pathogenesis is poorly understood. Recently, defects in differentiation have been linked to cancers, as they are associated with high cell proliferation. Treatments overcoming these defects enable terminal differentiation and subsequent tumor inhibition. OS development may be associated with defects in osteogenic differentiation. While early regulators of osteogenesis are unable to bypass these defects, late osteogenic regulators, including Runx2 and Osterix, are able to overcome some of the defects and inhibit tumor propagation through promoting osteogenic differentiation. Further understanding of the relationship between defects in osteogenic differentiation and tumor development holds tremendous potential in treating OS

    Conditionally Immortalized Mouse Embryonic Fibroblasts Retain Proliferative Activity without Compromising Multipotent Differentiation Potential

    Get PDF
    Mesenchymal stem cells (MSCs) are multipotent cells which reside in many tissues and can give rise to multiple lineages including bone, cartilage and adipose. Although MSCs have attracted significant attention for basic and translational research, primary MSCs have limited life span in culture which hampers MSCs' broader applications. Here, we investigate if mouse mesenchymal progenitors can be conditionally immortalized with SV40 large T antigen and maintain long-term cell proliferation without compromising their multipotency. Using the system which expresses SV40 large T antigen flanked with Cre/loxP sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized by SV40 large T antigen. The conditionally immortalized MEFs (iMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by Cre recombinase. The iMEFs express most MSC markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages under appropriate differentiation conditions in vitro and in vivo. The removal of SV40 large T reduces the differentiation potential of iMEFs possibly due to the decreased progenitor expansion. Furthermore, the iMEFs are apparently not tumorigenic when they are subcutaneously injected into athymic nude mice. Thus, the conditionally immortalized iMEFs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages. Our results suggest that the reversible immortalization strategy using SV40 large T antigen may be an efficient and safe approach to establishing long-term cell culture of primary mesenchymal progenitors for basic and translational research, as well as for potential clinical applications

    Epigenetic Regulation of Mesenchymal Stem Cells: A Focus on Osteogenic and Adipogenic Differentiation

    Get PDF
    Stem cells are characterized by their capability to self-renew and terminally differentiate into multiple cell types. Somatic or adult stem cells have a finite self-renewal capacity and are lineage-restricted. The use of adult stem cells for therapeutic purposes has been a topic of recent interest given the ethical considerations associated with embryonic stem (ES) cells. Mesenchymal stem cells (MSCs) are adult stem cells that can differentiate into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Owing to their ease of isolation and unique characteristics, MSCs have been widely regarded as potential candidates for tissue engineering and repair. While various signaling molecules important to MSC differentiation have been identified, our complete understanding of this process is lacking. Recent investigations focused on the role of epigenetic regulation in lineage-specific differentiation of MSCs have shown that unique patterns of DNA methylation and histone modifications play an important role in the induction of MSC differentiation toward specific lineages. Nevertheless, MSC epigenetic profiles reflect a more restricted differentiation potential as compared to ES cells. Here we review the effect of epigenetic modifications on MSC multipotency and differentiation, with a focus on osteogenic and adipogenic differentiation. We also highlight clinical applications of MSC epigenetics and nuclear reprogramming

    Therapeutic Implications of PPAR Ī³

    Get PDF
    Osteosarcoma (OS) is the most common nonhematologic malignancy of bone in children and adults. Although dysregulation of tumor suppressor genes and oncogenes, such as Rb, p53, and the genes critical to cell cycle control, genetic stability, and apoptosis have been identified in OS, consensus genetic changes that lead to OS development are poorly understood. Disruption of the osteogenic differentiation pathway may be at least in part responsible for OS tumorigenesis. Current OS management involves chemotherapy and surgery. Peroxisome proliferator-activated receptor (PPAR) agonists and/or retinoids can inhibit OS proliferation and induce apoptosis and may inhibit OS growth by promoting osteoblastic terminal differentiation. Thus, safe and effective PPAR agonists and/or retinoid derivatives can be then used as adjuvant therapeutic drugs for OS therapy. Furthermore, these agents have the potential to be used as chemopreventive agents for the OS patients who undergo the resection of the primary bone tumors in order to prevent local recurrence and/or distal pulmonary metastasis

    Lysophosphatidic Acid Acyltransferase Ī² (LPAATĪ²) Promotes the Tumor Growth of Human Osteosarcoma

    Get PDF
    Osteosarcoma is the most common primary malignancy of bone with poorly characterized molecular pathways important in its pathogenesis. Increasing evidence indicates that elevated lipid biosynthesis is a characteristic feature of cancer. We sought to investigate the role of lysophosphatidic acid acyltransferase Ī² (LPAATĪ², aka, AGPAT2) in regulating the proliferation and growth of human osteosarcoma cells. LPAATĪ² can generate phosphatidic acid, which plays a key role in lipid biosynthesis as well as in cell proliferation and survival. Although elevated expression of LPAATĪ² has been reported in several types of human tumors, the role of LPAATĪ² in osteosarcoma progression has yet to be elucidated.Endogenous expression of LPAATĪ² in osteosarcoma cell lines is analyzed by using semi-quantitative PCR and immunohistochemical staining. Adenovirus-mediated overexpression of LPAATĪ² and silencing LPAATĪ² expression is employed to determine the effect of LPAATĪ² on osteosarcoma cell proliferation and migration in vitro and osteosarcoma tumor growth in vivo. We have found that expression of LPAATĪ² is readily detected in 8 of the 10 analyzed human osteosarcoma lines. Exogenous expression of LPAATĪ² promotes osteosarcoma cell proliferation and migration, while silencing LPAATĪ² expression inhibits these cellular characteristics. We further demonstrate that exogenous expression of LPAATĪ² effectively promotes tumor growth, while knockdown of LPAATĪ² expression inhibits tumor growth in an orthotopic xenograft model of human osteosarcoma.Our results strongly suggest that LPAATĪ² expression may be associated with the aggressive phenotypes of human osteosarcoma and that LPAATĪ² may play an important role in regulating osteosarcoma cell proliferation and tumor growth. Thus, targeting LPAATĪ² may be exploited as a novel therapeutic strategy for the clinical management of osteosarcoma. This is especially attractive given the availability of selective pharmacological inhibitors
    • ā€¦
    corecore