46 research outputs found
Metabolite profile based on H-1 NMR of broiler chicken breasts affected by wooden breast myodegeneration
The objective was to characterize the effect of wooden breast (WB) myodegeneration on the metabolite profile of chicken meat by H-1 NMR and multivariate data analysis. The results displayed that the metabonome of chicken breast consisted predominantly of 30 metabolites, including amino acids, organic acids, carbohydrates, alkaloids, nucleosides and their derivatives. WB-affected samples showed higher leucine, valine, alanine, glutamate, lysine, lactate, succinate, taurine, glucose, and 5'-IMP levels, but lower histidine, beta-alanine, acetate, creatine, creatinine, anserine and nicotinamide adenine dinucleotide levels compared to normal fillets (p <0.05). In conclusion, results indicated that WB-affected fillets possessed a unique biochemical signature. This unique profile could identify candidate biomarkers for diagnostic utilization and provide mechanistic insight into biochemical processes leading to WB myopathy in commercial broiler chickens.Peer reviewe
Effects of Lactic Acid Bacteria Fermentation on Calcium Release and Metabolites in Chicken Bone Paste
The effects of Lactobacillus acidophilus CICC6074 (LA), Limosilactobacillus reuteri WQ-Y1 (LR) and Lactiplantibacillus plantarum A3 (LP) on calcium release and metabolite composition during the fermentation of chicken bone paste were studied using chicken bone as raw materials. The growth characteristics of lactic acid bacteria (LAB) strains, pH changes, total acidity variations, calcium distribution and calcium-to-phosphorus ratio, composition and content of metabolites were investigated to reveal the effect of the growth of LAB on calcium release during the fermentation of chicken bone paste. Principal component analysis (PCA), correlation analysis, and KEGG metabolic pathway analysis were further employed to identify the key metabolic pathways during the fermentation of chicken bone paste. The results showed that, LA, LR and LP strains were able to effectively utilize chicken bone paste for growth and proliferation, and the maximum viable cell count was observed at 30 h during the fermentation processing. The total acidity contents of LA, LP and LR groups were 5.60, 3.76, and 3.75 g/L respectively, significantly higher total acidity content was shown in LA group compared to other treatment groups (P<0.05). Calcium release analysis revealed that the total calcium content increased from 181.33 mg/kg of control group to 1176.67 mg/kg of LR, 1310.00 mg/kg of LP, and 1916.67 mg/kg of LA, respectively. The free calcium content of LA, LP and LR groups was 40.60, 50.19, and 74.62 fold-time higher than that of control group, and the free calcium content of LA group was significantly higher compared to LP and LR groups (P<0.05). X-ray diffraction and infrared spectroscopy results indicated that hydroxyapatite of bone paste mainly existed in an amorphous form. The intensity of characteristic peaks of hydroxyapatite at 2926 and 1050 cm−1 significantly decreased among LR, LP and LA groups compared to control group. LC-MS/MS analysis demonstrated that 37 metabolites were identified in the fermented bone paste. Principal Component Analysis (PCA) and correlation analysis revealed that lactic acid, pyruvate, sucrose, L-serine, and 5'-CMP were the key metabolites of fermented bone paste. KEGG metabolic pathway analysis indicated that pyrimidine metabolism, arginine and proline metabolism, glycolysis, pyruvate metabolism, taurine and hypotaurine metabolism, and tricarboxylic acid (TCA) cycle were the main metabolic pathways associated with lactic acid bacteria growth and calcium release during the fermentation of bone paste
Associations of Gut Microbiota With Heat Stress-Induced Changes of Growth, Fat Deposition, Intestinal Morphology, and Antioxidant Capacity in Ducks
Accumulating evidence has revealed the dysbiosis of gut/fecal microbiota induced by heat stress (HS) in mammals and poultry. However, the effects of HS on microbiota communities in different intestinal segments of Cherry-Valley ducks (a widely used meat-type breed) and their potential associations with growth performances, fat deposition, intestinal morphology, and antioxidant capacity have not been well evaluated yet. In this study, room temperature (RT) of 25°C was considered as control, and RT at 32°C for 8 h per day was set as the HS treatment. After 3 weeks, the intestinal contents of jejunum, ileum, and cecum were harvested to investigate the microbiota composition variations by 16S ribosomal RNA amplicon sequencing. And the weight gain, adipose indices, intestinal morphology, and a certain number of serum biochemical parameters were also measured and analyzed. The results showed the microbial species at different levels differentially enriched in duck jejunum and cecum under HS, while no significant data were observed in ileum. HS also caused the intestinal morphological changes (villus height and the ratio of villus height to crypt depth) and the reductions of growth speed (daily gain), levels of serum triglyceride (TG) and total cholesterol, and antioxidant activity (higher malondialdehyde (MDA) content and lower total antioxidant). The higher abdominal fat content and serum glucose level were also observed in HS ducks. The Spearman correlation analysis indicated that in jejunum the phyla Firmicutes and Proteobacteria were associated with average daily gain, feed/gain, serum TG and MDA levels, and villus height/crypt depth (P < 0.05). The phylum Firmicutes and genus Acinetobacter were significantly associated with fat deposition and serum glucose level (P < 0.05). The genus Lactobacillus was positively associated with serum total antioxidant (P < 0.05), while some other microbial species were found negatively associated, including order Pseudomonadales, genera Acinetobacter, and unidentified_Mitochondria. However, no significant correlations were observed in cecum. These findings imply the potential roles of duck gut microbiota in the intestinal injuries, fat deposition, and reductions of growth speed and antioxidant capacity caused by HS, although the molecular mechanisms requires further investigation
Synthesis and Biological Evaluation of Novel Fusidic Acid Derivatives as Two-in-One Agent with Potent Antibacterial and Anti-Inflammatory Activity
Fusidic acid (FA), a narrow-spectrum antibiotics, is highly sensitive to various Gram-positive cocci associated with skin infections. It has outstanding antibacterial effects against certain Gram-positive bacteria whilst no cross-resistance with other antibiotics. Two series of FA derivatives were synthesized and their antibacterial activities were tested. A new aromatic side-chain analog, FA-15 exhibited good antibacterial activity with MIC values in the range of 0.781-1.563 µM against three strains of Staphylococcus spp. Furthermore, through the assessment by the kinetic assay, similar characteristics of bacteriostasis by FA and its aromatic derivatives were observed. In addition, anti-inflammatory activities of FA and its aromatic derivatives were evaluated by using a 12-O-tetradecanoylphorbol-13-acetate (TPA) induced mouse ear edema model. The results also indicated that FA and its aromatic derivatives effectively reduced TPA-induced ear edema in a dose-dependent manner. Following, multiform computerized simulation, including homology modeling, molecular docking, molecular dynamic simulation and QSAR was conducted to clarify the mechanism and regularity of activities. Overall, the present work gave vital clues about structural modifications and has profound significance in deeply scouting for bioactive potentials of FA and its derivatives
Green Processing Technology of Meat and Meat Products
Consumers are increasingly demanding higher quality meat products [...
Chinese Emergency Event Recognition Using Conv-RDBiGRU Model
In view of the weak generalization of traditional event recognition methods, the limitation of dependence on field knowledge of expert, the longer train time of deep neural network, and the problem of gradient dispersion, the neural network joint model, Conv-RDBiGRU, integrated residual structure was proposed. Firstly, text corpus is preprocessed by word segmentation and stop words processing and uses word embedding to form the matrix of word vectors. Then, local semantic features are extracted through convolution operation, and deep context semantic features are extracted through RDBiGRU. Finally, the learned features are activated by softmax function and the recognition results are output. The novelty of work is that we integrate residual structure into recurrent neural network and combine these methods and field of application. The simulation results show that this method improves precision and recall of Chinese emergency event recognition, and the F-value is better than other methods
Liposomes as Delivery System for Applications in Meat Products
In the meat industry, microbial contamination, and lipid and protein oxidation are important factors for quality deterioration. Although natural preservatives have been widely used in various meat products, their biological activities are often reduced due to their volatility, instability, and easy degradation. Liposomes as an amphiphilic delivery system can be used to encapsulate food active compounds, which can improve their stability, promote antibacterial and antioxidant effects and further extend the shelf life of meat products. In this review, we mainly introduce liposomes and methods of their preparation including conventional and advanced techniques. Meanwhile, the main current applications of liposomes and biopolymer-liposome hybrid systems in meat preservation are presented