12 research outputs found

    A biophoton method for identifying the quality states of fresh Chinese herbs

    Get PDF
    Introduction: The quality of Chinese herbs is the basis for ensuring their safety and efficacy. However, the quality evaluation system is imperfect. In particular, there is a lack of quality evaluation methods for fresh Chinese herbs during growth. The biophoton is a common phenomenon and provides complete information about the interior of the living system, which is consistent with the holistic concept of traditional Chinese medicine. Therefore, we aim to correlate the biophoton characteristics with the quality states to find the biophoton parameters that can characterize the quality states of fresh Chinese herbs.Methods: The biophoton characteristics of motherwort and safflower were measured and characterized by the counts per second (CPS) in the steady state and the initial intensity (I0) and coherent time (T) of delayed luminescence. The active ingredient content was measured by ultra-high-performance liquid chromatography (UPLC). The pigment content of motherwort leaves was measured by UV spectrophotometry. The t-test and correlation analysis were performed on the experimental results.Results: The CPS and I0 of motherwort and I0 of safflower showed a significant downward trend during the growth process, and their active ingredient content showed a trend that increased and then decreased. The CPS, I0, and the content of active ingredients and pigments in a healthy state were significantly higher than those in a poor state, while T showed the opposite results. The CPS and I0 were all significantly and positively correlated with the content of active ingredients and pigments, while the T of motherwort showed the opposite results.Conclusion: It is feasible to identify the quality states of fresh Chinese herbs by using their biophoton characteristics. Both CPS and I0 have better correlations with the quality states and can be considered characteristic parameters of the quality of fresh Chinese herbs

    Recent Developments in Molecular Characterization, Bioactivity, and Application of Arabinoxylans from Different Sources

    No full text
    Arabinoxylan (AX) is a polysaccharide composed of arabinose, xylose, and a small number of other carbohydrates. AX comes from a wide range of sources, and its physicochemical properties and physiological functions are closely related to its molecular characterization, such as branched chains, relative molecular masses, and substituents. In addition, AX also has antioxidant, hypoglycemic, antitumor, and proliferative abilities for intestinal probiotic flora, among other biological activities. AXs of various origins have different molecular characterizations in terms of molecular weight, degree of branching, and structure, with varying structures leading to diverse effects of the biological activity of AX. Therefore, this report describes the physical properties, biological activities, and applications of AX in diverse plants, aiming to provide a theoretical basis for future research on AX as well as provide more options for crop breeding

    A comparison of chemical composition, bioactive components and hypoglycemic activity of Stigma maydis obtained from different growing times

    No full text
    AbstractStigma maydis (SM) possesses remarkable nutritional value due to the presence of health-protective chemical constituents in it. Despite its commercial uses, there is a lack of information on changes in the nutritional profile of SM during Shenke 601 waxy corn development by following four different maturity stages (silking stage; blister stage; milky stage; dough stage). In this study, the ideal times for the development of seven active compounds (polysaccharides, saponin, rutin, luteolin, quercetin, kaempferol and chlorogenic acid) were at the silking stage. The total flavonoid and total phenol content increased as the SM matured. Except for the above-mentioned active compounds, the content of major nutritional components of dough stage was higher than that of three other stages. The extract of Stigma maydis exhibited good α-amylase, α-glucosidase and pancreatic lipase inhibition activities. The ethanolic SM extracts showed better inhibitory effects than aqueous SM extracts with a dose–effect relationship. The hypoglycemic activity of ethanolic extract was higher than that of aqueous extract at each stage. This provided an important basis for the application of SM

    Revealing Genetic Differences in Fiber Elongation between the Offspring of Sea Island Cotton and Upland Cotton Backcross Populations Based on Transcriptome and Weighted Gene Coexpression Networks

    No full text
    Fiber length is an important indicator of cotton fiber quality, and the time and rate of cotton fiber cell elongation are key factors in determining the fiber length of mature cotton. To gain insight into the differences in fiber elongation mechanisms in the offspring of backcross populations of Sea Island cotton Xinhai 16 and land cotton Line 9, we selected two groups with significant differences in fiber length (long-fiber group L and short-fiber group S) at different fiber development stages 0, 5, 10 and 15 days post-anthesis (DPA) for transcriptome comparison. A total of 171.74 Gb of clean data was obtained by RNA-seq, and eight genes were randomly selected for qPCR validation. Data analysis identified 6055 differentially expressed genes (DEGs) between two groups of fibers, L and S, in four developmental periods, and gene ontology (GO) term analysis revealed that these DEGs were associated mainly with microtubule driving, reactive oxygen species, plant cell wall biosynthesis, and glycosyl compound hydrolase activity. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that plant hormone signaling, mitogen-activated protein kinase (MAPK) signaling, and starch and sucrose metabolism pathways were associated with fiber elongation. Subsequently, a sustained upregulation expression pattern, profile 19, was identified and analyzed using short time-series expression miner (STEM). An analysis of the weighted gene coexpression network module uncovered 21 genes closely related to fiber development, mainly involved in functions such as cell wall relaxation, microtubule formation, and cytoskeletal structure of the cell wall. This study helps to enhance the understanding of the Sea Island–Upland backcross population and identifies key genes for cotton fiber development, and these findings will provide a basis for future research on the molecular mechanisms of fiber length formation in cotton populations

    DDX24 Mutations Associated With Malformations of Major Vessels to the Viscera

    No full text
    Vascular malformations present diagnostic and treatment challenges. In particular, malformations of vessels to the viscera are often diagnosed late or incorrectly due to the insidious onset and deep location of the disease. Therefore, a better knowledge of the genetic mutations underlying such diseases is needed. Here, we evaluated a four-generation family carrying vascular malformations of major vessels that affect multiple organs, which we named "multiorgan venous and lymphatic defect" (MOVLD) syndrome. Genetic analyses identified an association between a mutation in DEAD-box helicase 24 (DDX24), a gene for which the function is largely unknown, and MOVLD. Next, we screened 161 patients with sporadic vascular malformations of similar phenotype to our MOVLD family and found the same mutation or one of the two additional DDX24 mutations in 26 cases. Structural modeling revealed that two of the mutations are located within the adenosine triphosphate-binding domain of DDX24. Knockdown of DDX24 expression in endothelial cells resulted in elevated migration and tube formation. Transcriptomic analysis linked DDX24 to vascular system-related functions. Conclusion: Our results provide a link between DDX24 and vascular malformation and indicate a crucial role for DDX24 in endothelial cell functions; these findings create an opportunity for genetic diagnosis and therapeutic targeting of malformations of vessels to the viscera

    Genome-wide association study of Parkinson’s disease in East Asians

    No full text
    Genome-wide association studies (GWAS) on Parkinson’s disease (PD) have mostly been done in Europeans and Japanese. No study has been done in Han Chinese, which make up nearly a fifth of the world population. We conducted the first Han Chinese GWAS analysing a total of 22,729 subjects (5,125 PD cases and 17,604 controls) from Singapore, Hong Kong, Malaysia, Korea, mainland China and Taiwan. We performed imputation, merging and logistic regression analyses of 2,402,394 SNPs passing quality control filters in 779 PD cases, 13,227 controls, adjusted for the first three principal components. 90 SNPs with association P  1.45) on PD risk. Our results also demonstrate some differences in the genetic contribution to PD between Europeans and Asians. Further pan-ethnic meta-analysis with European GWAS cohorts may unravel new PD loci.NRF (Natl Research Foundation, S’pore)ASTAR (Agency for Sci., Tech. and Research, S’pore)NMRC (Natl Medical Research Council, S’pore)Accepted versio
    corecore